A-PDF MERGER DEMQ

TANDY "

Pocket Computer
PC-8

OPERATION MANUAL
CAT. NO. 26-3655

§

e e s ol

4 El

on
& .3
B 3
Ll
(3 | %
=

m
o

o

O
oer Q=
20
T v
o

Scanned by Dale - no cost

http://www.a-pdf.com

TABLE OF CONTENTS

Page

INTRODUCTORY NOTE i e i aenas 1
CHAPTER 1. HOW TO USE THIS MANUAL. 2
CHAPTER 2. INTRODUCTION TO THE PCB.. 4
Descriptionof System e 4
Description of KeyS. s 5
Description of Display oot 8
RESET BULION . . o o v o e e e e b e e et e e e e 9
Battery Replacement e 11
CHAPTER 3. USING THE PC-8 AS A CALCULATOR............. 14
Start UP . . ot ot e e e e e e e 14
SHUTL DOWI . o e e e e e e e e e e 14
AULE OFF e e e e e e e s 14
Some Helpful Hints o e e e e e 15
Key QPerationot i e e 16
Simple Calculationsot i i e e 16
Recalling Entries oo e 17
EIFOIS © . . o 0 e e e e e e e e e e e e e s 21
Chain Calculations. ot i it it et e e 21
Negative NUmMbers i 23
Compound Calculations and Parentheseso 23
Using Variables in Calculations. 24
Chained Calculations e 26
MNow [1's Your TUFM .« . o o v o i et e e et a e e a e 25
CHAPTER 4. CONCEPTS AND TERMS OF BASIC 27
Numeric CONSTANTS . . . o v o v vt v e s e e s m et e e e 27
Scientific NOtationot e i e 27
T3 13 €22 28
Hexadecimal Numbers« e e 29
SEANG CONSTANTS . . . o o ve v et e s e e o 29
VA S . . o e e e e e e e 30
Simple Numeric Variables 30
Simple String Variables. e 30
Numeric Array Variables. e 30
String Array Variableso e e N
Prealiocated Variables« o e 11
EXPIESSIONS . . o o v v i e ot e e e e 32

Table of Contents

Page
NUMEerc OPETators . . v v oo v v c v e m e m s i s e m s b a e 33
SIring EXPressionso b e v 33
Relational EXPressions v v v e e mm o mmnin e 34
Logical EXPrEssions . . . o o v concuan e 35
Parentheses and Operator Precedenceo oo oo 37
Caloulator MOGE v e v em s m e 37
FUNGEIONS + o e v et ee e e m e e mas e e 37
CHAPTER 5. PROGRAMMING -c.envus 39
PROGIAMIS . .« o o ve e v o e s s e 39
BASIC STatemMenTS. . o o o o v v e v o e e m e e 39
Line NUMBEES. . o v v e ot ia s im et mm e me s 39
BASICVErbS . . o e et s e e s 39
BASIC COMMANGS. . . o v v cv v ot imma s im e m s sy 40
OGBS . - o v o e e e e e 40
Beginning to Programonthe PC-8 oo 41
Example 1 — Entering and Running a Program oo e 41
Example 2 — EditingaProgram 42
Example 3 — Using Variables in Programming.o 44
Example 4 — More Complex Programming . . . - ... oo ot 46
Storing Programs in the Memoryo e 47
CHAPTER 6. SHORTCUTS e 49
The DEF Key and Labelled Programso oo e 49
TemMpPIate . . . oo 50
CHAPTER 7. USING THE OPTIONS. v 51
Introduction to the Printer/Cassette Interface.co.oonn 51
POWET « « o e vt et e e e 52
Connecting the PC-8 Pocket Computer to the PC-3
Printer/Cassette Interface {Cat. No. 26-3691).vvvon 53
Loading the Paper oo h oo e e 54
Using the PRINtEr oot m s e im e 56
Using a Cassette Recorder. v in e 657
Care and Maintenance oo v e v oo (323
EIFOUS o o v o o e e e e e e e e e 59
EXAMPHES. o o o v v e et e e 59
CHAPTER 8. BASIC REFERENCE e 62
COMIMANGS. « o o o e e e e et e e e e 64
BIDS & o o e e e e e e e 77

Table of Contents

Page
FUNCHIONS & o o v v v e e e r et e et e e e et et e e e e e e s s a s 121
Pseudovariablest v e oo 121
NUMEHC FURCTIONS . . o o o ot e et e e ot e e e e e e e 122
String FUNCLIONS . . .o .ottt e 127
CHAPTER 9. TROUBLESHOOTING 129
Machine OPeration v v v i e e e e e 129
BASIC Debugging . . . o o vttt e 130
CHAPTER 10. MAINTENANCE s 131
APPENDICES
Appendix A: Error MBSSBOES 132
Appendix B: ASCII Character Code Chart 134
Appendix C: Formatting QuIputo 136
Appendix D: Expression Evaluation and Operater Priority 139
Appendix E: Feature Cormnparison of the PC-1, PC-2, PC-3andPC-8 142
Appendix F: Numeric Precision. 147
Appendix G: Specifications. 149
Appendix H: Program Examples.o 151
INDEX . . ot e e e 188

INTRODUCTORY NOTE

Welcome to the world of Tandy computers!

Few industries in the world today can match the rapid growth and technological
advances being made in the field of personal computing. Computers which just a
short time ago would have filled a room, required a Ph. D. to program, and cost
thousands of dollars, now fit in the palm of your hand, are easily programmed, and
cost so little that they are within the reach of nearly everyone.

Your new Tandy PC-8 was designed to bring you all of the latest state-of-the-art
features of this computing revolution. As one of the most sophisticated hand-held
computers in the world today. It incorporates many advanced capabilities:

* MEMORY SAFE GUARD -~ the PC-8 remembers stored programs and
variables, even when you turn it off.

Battery powered operation for true portability.

* AUTO POWER OFF function conserves the batteries by turning the power
off if no activity takes place within a specified time limit.

* Programmable functions which allow the PC-8 to be used as a “‘smart”
calculator.

* An expanded version of BASIC which provides formatted output, two-
dimensional arrays, variable length strings, program chaining and many other
advanced features.

* An optional Printer/Cassette Interface (Cat. No. 26-3591) for long-term
storage and hard-copy printout of programs and data.

Congratulations on entering an exciting and enjoyable new world. We are sure that
you will find this purchase one of the wisest you have ever made. The Tandy
PC-8 is a powerful tool, designed to meet your specific mathematical, scientific,
engineering, business and personal computing needs. With the Tandy PC-8 you can
begin NOW providing the solutions you’ll need tomorrow!

CHAPTER 1

HOW TO USE THIS MANUAL

This manual is designed to introduce you to the capabilities and features of your
PC-8 and to serve as a valuable reference tool. Whether you are a ““first time user’’
or an “old hand’* with computers, first acquaint yourself with the PC-8 by reading
and working through Chapters 2 through 6.

* Chapter 2 describes the physical features of the PC-8.

* Chapter 3 demonstrates the use of the PC-8 as a calculator.

* Chapter 4 defines some terms and concepts which are essential for BASIC

programming, and tells you about the special considerations of these con-
cepts on the PC-8.

Chapter 5 introduces you to BASIC programming on the PC-8, showing you
how to enter, correct, and run programs.

Chapter 6 discusses some shortcuts that make using your new computer
easier and more enjoyable.

Experienced BASIC programmers may then read through Chapter 8 to learn the
specific features of BASIC as implemented on the PC-8. Since every dialect of
BASIC is somewhat different, read through this material at least once before start-
ing serious programming.

Chapter 8 is a reference section covering all the verbs, commands, and functions
of BASIC arranged in convenient alphabetical groupings.

If you have never programmed in BASIC before, we suggest that you buy a separate
book on beginning BASIC programming or attend a BASIC class, before trying to
work through these chapters. This manual is not intended to teach you how to
program,

The remainder of the manual consists of:

¥ Chapter 7 — Basic information on the optional Printer/Cassette Interface
(Cat. No. 26-3591).
* Chapter 9 — A troubleshooting guide to help you solve some operating and

programming problems.

Chapter 10 — The care and maintenance of your new computer.

How to Use This Manual

Detailed Appendices, at the end of the manual, provide you with useful charts,
comparisons, and special discussions concerning the use and operation of the
PC-8.

Using the Hard Cover

When the computer is not being used, mount the hard cover over the keyboard
of the computer.
® When the computer is not in use.

® When the computer is in use.

CHAPTER 2

INTRODUCTION TO THE PC-8

The Tandy PC-8 system consists of:
53-character keyboard.

16-character display.

* Powerful BASIC in 17.4KB ROM.

* 4-bit CMOS processor.

* 2KB RAM

Option: Printer/Cassette Interface.

ON
o) @ &

DEL

INS
=) &) () o]

DEG RAD GRAD

CA
ATG-GFF/ PERMANENT MENORY

' I ? :) H A
EDEEEE0DEE E B @

INPUT IF THEN GOTO FOR STEP NEXT UST ARUN

TO {) @ <
OEEEE DO O 6 E E E E

PRINT USING GOSUB RETURN DIM END CSAVE CLOAD

PanNp T v Exp >
EOEUDEO @ N EE = @& E& GE

Figure 1.

Now study each section of the keyboard to familiarize yourself with the location
and functions of specific parts of the PC-8 keyboard. For now just locate the keys
and read the description of each. Chapter 3 will teach you how to begin operation.

Introduction to the PC-8

Description of Keys

Figure 2,

POWER off[Mon Use to turn the PC-8 ON and OFF.

s

o
o)
2z

AE B

vz

&

Press before pressing a key to enter the letter/command shown in brown
on the PC-8 keyboard. Not used to capitalize letters as all alphabet keys
on the PC-8 are in the upper case.

Press to display the next program line.
Press to display the previous program line.

Temporarily interrupts a program being executed. Press after an auto
power off to turn the computer back on.

Allows you to move the cursor to the left without erasing characters.
Press before pressing this key to DELete the character the cursor
is “on top of”’.

Allows you to move the cursor to the right without erasing characters.
Press before pressing this key to make a space directly before the
character the cursor is “on top of’’. You can then INSert a new character
into this space.

Press to change the mode from RUN to PROgram or from PRO to RUN.

A special key used to execute BASIC programs.

Chapter 2

Y%

I@@lll@.l

INPUT IF THEN GOTO FOR STEP NEXT LIST RUN
PRINT USING GOSUB RETURN OIM END CSAVE CLOAD P~NP
SPC
Figure 3.

(A]~ [Z)Press to enter the characters as you would on a standard typewriter.
On the PC-8 display, the characters always appear in the upper case.

=1 On the PC-8, this key is not used to indicate the end of a calculation; in
BASIC programming, this symbol has a special function.

(] Press to insert a blank space.
SPC

[—

[E_NTEN: When you press this key, whatever you previously typed is “entered”
into the computer's memory. You must press before the PC-8
will act on input from the keyboard. Press before pressing this
key to switch on and off the printing on the printer.

o #
$ % & These symbols are found above the top row of alphabet keys.
?_ o Press and then the alphabet key under the character to
’ display these symbols.
INPUT

I Preset command and statement keys. Press and then the
alphabet (including equals and space) key under the command

l or statement to enter the designated command or statement to
[Ciﬂ)’ the PC-8

Introduction to the PC-8

L

B8 E

B S G &
o & B

e (-)

Figure 4.

~ (19][+ JUse to enter numerical values.
{

M-

CA
CL

DI
i

m
fa)
A

4

colih [em

Press and then this key to enter open parenthesis.
Press and then this key to enter close parenthesis.

Press to erase the characters you have just typed in and release errors.
Press before pressing this key to activate the CA (reset) function.
CA clears the display and resets the computer.

Press to include the division operator in calculations. Press and
then this key to display the “‘power’’ symbol, indicating that a number is
to be raised to a specific power.

Press to include the multiplication operator in calculations. Press
and then this key to display the “less than’’ symbol.

Press to include the subtraction operator in calculations. Press
and then this key to display the “‘greater than’’ symbol.

Press to include the addition operator in calculations. Press and
then this key to display the exponentiation symbol used in scientific
notation.

Press and then this key to enter the 7 (ratio of circumference to
diameter of the circle).

Press and then this key to enter the square root operator.
Press and then this key to enter the @ character.

Chapter 2

Description of Display

BUSYy P DEF SHIFT E

RUN PRO DEG RAD GRAD

Figure 5.

The liquid crystal display of the Tandy PC-8 shows up to 16 characters at one
time. Although you may input up to 8@ characters including in one line,
only the 16 characters are displayed. To review the remaining characters in a line,
move the cursor to either end; the display will ‘scroil’ — that is, as characters
drop off the display, new characters appear on the opposite end.

The display consists of:

ol
RUN
]
PRO
BUSY

DEF
-—
DEG
RAD
GRAD

SHIFT

The Prompt. This symbol appears when the computer is awaiting input.
As you type, the prompt disappears and is replaced by the cursor.

The Cursor. This symbol (the underline) tells you the location of the
next character to be typed in. As you begin typing, the cursor replaces
the prompt. Move the cursor with (=] or =] key to position it over
certain characters when you want to INSert and DELete.

RUN Indicator. Tells you the PC-8 is in the RUN mode.
PROgram Indicator. Tells you the PC-8 is in the PROgramming mode.

Program Execution Indicator. Lights when the PC-8 is executing a
program (except when characters are displayed). The PC-8 will not
undergo auto power off while the BUSY indicator is on. BUSY disap-
pears from the display when execution is completed.

Printer Indicator. Appears when you select the print option when using
the PC-8 as a calculator.

Definable Mode Indicator. Lights up when you press the DEF key.

Angular Measurement Indicator. Displays the current unit of angles for
the input of trigonometric functions. Depending on the mode in use
the indicator DEG (degrees), RAD (radians), or GRAD (gradients) will
appear.

Shift Key Indicator. Lights up when the key has been pressed.
Remember, the key must be released before pressing any other
key.

Error Indicator. Appears when an error is encountered. Reset with the

(cL] key.
8

Introduction to the PC-8

RESET Button

Reset button || conrasst l

RESET

ET—) v
@

Figure 6. ;é

Use the RESET button to reset the computer when CLear or CA is not sufficient to
correct the problem.

To reset the PC-8, set the power switch to the ON position and press the RESET
ON

button on the back while holding down any key except . This preserves ail

programs and variables.

Note: Never press the RESET button while holding down . This operation
may not preserve the reserved contents.

Reset button

Press the RESET button with any
pointed object such as a ball-point
pen. Do not use easily broken
points such as mechanical pencils or
the tips of needles.

Hold down
any key

except

PC-8

Figure 7.
If you get no response from any key even after the above operation, press the
RESET button and do the following:

1 Set the PC-8 to the PROgram mode with the key.
2 Enter NEWQ and press

This operation clears all the contents reserved in the PC-8. Re-enter the program.

Chapter 2

Contrast Control

Turn the control in the direction of the
arrow to darken the display, and turn it
in the opposite direction to lighten the
display.

. Adjust the control so that the display is
Figure 8. easy to see.

10

Introduction to the PC-8

Battery Replacement

The PC-8 operates on two lithium batteries. When connected to the Printer/
Cassette Interface, the PC-8 power can also be supplied from the Printer/Cassette
Interface if it has enough power voitage. This minimizes the power consumption
of the lithium batteries.

When replacing the batteries, take the following precautions to eliminate many
problems:

® Always replace both batteries at the same time.

® Do not mix a new battery with a used battery.
® Use only: Lithium battery (type CR-2032 Cat. No. 23-162)

INSTALLING THE BATTERIES

The display may be dim and difficult to see, even after turning the contrast control
fully counterclockwise. This indicates that the battery power is consumed.
Replace the batteries promptly. Remember that the computer’s memory is cleared
when the batteries are removed. Use the optional Printer/Cassette Interface to save
programs and data on tape.

(1) Turn off the computer by setting the POWER switch to OFF.

(2) Remove the screws from the back cover with a small screw driver. (Fig. 9)

Figure 9.

Screw

11

Chapter 2

(3) Remove the battery cover by sliding it in the direction of the arrow shown in

Figure 10.

Battery cover

Figure 10.

(4) Replace the two batteries. (Fig. 11)’

Always replace
both of the batteries
at the same time.

= i e e O

Figure 11.

(5) Replace the battery cover by sliding it in the reverse direction of the arrow
shown in Figure 10.

(6) Hook the claws of the back cover into the slits of the computer body. (Fig. 12)

Figure 12.

12

Introduction to the PC-8

(7) Push the back cover in slightly while replacing the screws.

{8) Turn on the PC-8 by setting the power slide switch to the ON position and
press the RESET button to clear the PC-8.
Change the mode to PRO.

Enter NEWO and press .
The display should ook like this:

Prompt symbol

|
!

RUN PRO DEG RAD GRAD

Figure 13.

if the display is blank or displays any other symbol than the prompt
remove the batteries and install them again, then check the display.

NOTE:
Keeping a dead battery in the computer may resuit in damage to the computer
from chemical leakage of the battery. Remove a dead battery promptly.

’E\UTlON: Keep batteries out of the reach of children.

13

CHAPTER 3

USING THE PC-8 AS A CALCULATOR

Now that you are familiar with the layout and components of the Tandy PC-8,
we will begin investigating the exciting capabilities of your new computer,

Because the PC-8 allows you the full range of calcuiating functions, plus the in-
creased power of BASIC programming abilities (useful in more complex calcula-
tions), it is commonly referred to as a “‘smart’’ calculator.

Before using the PC-8, be sure that the batteries are correctly instailed.

To turn ON the PC-8, slide the power switch to the ON position. Confirm that the
mode indicator (==) is positioned above the label RUN; if not, press the key.
For use as a calculator, the PC-8 must be in the RUN mode. When the machine is
ON, the PROMPT (>) will appear on the display.

To turn OFF the PC-8, slide the power switch to the OFF position.

When you turn OFF the machine, you clear {erase) the display. However, the
PC-8 does remember all programs and reserved contents. All of these contents are
still in effect when the machine is turned back ON.

When the CLOAD command is executed, stop the execution by pressing the [BR]
key before sliding the power switch to the OFF position,

To save battery wear, the PC-8 automatically shuts off when no keys have been

pressed for about 11 minutes. (Note: The PC-8 will not shut off while you are
executing a program.)

To restart the computer after an auto off, press the [%J key. All settings will be
exactly as they were when the AUTO OFF occurred.

14

Using the PC-8 as a Calculator

Some Helpful Hints

Until you are used to your new machine, you are bound to make mistakes. Later
we will discuss some simple ways to correct these mistakes. For now, if you get an
Error Message, press CLear and retype the entry. If the computer ‘‘hangs up’’ —
you cannot get it to respond at all — press the RESET button {See Chapter 2}.

The PROMPT (>) tells you that the PC-8 is awaiting input. As you enter data the
PROMPT disappears and the cursor {—) moves to the right, indicating the next
available location in the display.

The right (»] and left (4] arrows move the cursor within a line. When you
move the cursor over a character, it changes to a flashing solid block {).

informs the PC-8 that you finished entering data and signals the computer

to perform the indicated operations. YOU MUST PRESS AT THE END
OF EACH LINE OF INPUT, OR YOUR CALCULATIONS WILL NOT BE PRO-
CESSED BY THE PC-8.

When performing numeric calculations, input appears on the left of the screen:
the results appear on the right of the display.

When using the key in conjunction with another key (to enter square root

for example) press , release the , then press the other key. is
active for only one key at a time.

Do not use dollar signs or commas when entering calculations into the PC-8. These
characters have special meaning in the BASIC programming language.

In this manual we use @ to indicate zero, so that you can distinguish between the
number (@) and the letter (O).

To help get you started entering data correctly, we will show you each keystroke
in the example calculations. When is used, we will indicate the desired
character in the following keystroke. For exampie pressing and (1] will
produce the { character. These keystrokes are written as 7.

Be sure to enter Clear after each calculation {unless you are performing chain cal-
culations). Clear erases the display and resets the error condition. It does not
erase anything stored in the computer's memory.

Chapter 3

Key Operation

Now let's operate the keys, Set the PC-8 to the RUN mode and press the following
keys while watching the display:

(Example)

zZ] [> ZXC_

() e

RN FERKERII - ZXC12.3_

> >

Al = @) > A=4+5_
T
Cursor

When you press an alphabet or number key, the item written on the key will be
entered. When you wish to enter the character or symbol written above a key,
press before operating the key.

{(Example)
l—CIears the display.

PRINT

[e0) (st [2) > PRINT _

o (L —
SHIFT][W] [SHIFT SHFT](«] —> PRINT ” (\/ o

The key is used to enter the characters or symbols labeled in brown above
the keys that have dual functions. If you repeatedly press the key, the
SHIFT symbol in the top right of the display will go on and off. The SHIFT
symbol indicates that the key is activated and the characters labeled in
brown can be entered.

Simple Calculations

The PC-8 performs calculations with ten-digit precision. Set the PC-8 to the RUN
mode. Now try these simple arithmetic examples. Remember to CLear between
calculations.

16

Using the PC-8 as a Calculator

B [(#) (57 (8] I 100. |
(i) (g3 (8 (=) [5) (8 50. |
(67 (8" (% (1) (@] 600. |
03 (e (8 4 [5) [Enem) 60. |
mnir s 2} 100. |
(2] (%] &3 6. 283185307

=] (6 (4] [EntER) B 8. |

Recalling Entries

Even after the PC-8 has displayed the results of your calculation, you can redisplay
your last entry (unless you pressed Clear). To recall, use the left (4] or right
(] arrow.

The left arrow [« recalls the expression with the cursor positioned after the last
character.

The right arrow [®] recalls the expression with the cursor positioned on top of
the first character.

Remember that the left and right arrows are also used to position the cursor along a
line. The right and left arrows are very helpful in editing {or modifying) entries
without having to retype the entire expression.

You will become familiar with the use of the right and left arrows in the following
examples. Now, take the role of the manager and perform the calculations as we
discuss them.

As the head of personnel in a large marketing division, you are responsible for
planning the annual sales meeting. You expect 300 people to attend the three day
conference. For part of this time, the sales force will meet in small groups. You
believe that groups of six would be a good size. How many groups would this be?

Input Display

3) (¢ (2. (/. 6] L 50.

17

Chapter 3

On second thought you decide that groups containing an odd number of partici-
pants might be more effective. Recall your last entry using the ([« arrow,

Input Display
8 | 300/6_

To calculate the new number of groups you must replace the six with an odd
number. Five seems to make more sense than seven. Because you recalled using
the (4] arrow, the cursor is positioned at the end of the display. Use the (€] to
move the cursor one space to the left,

Input Display
(< 300/6

Notice that after you move the cursor, it becomes a flashing block Whenever
you position the cursor on top of an existing character, it will be displayed as the
flashing cursor.

Type in a 5 to replace the 6. One caution in replacing characters — once you type
a new character over an existing character, the original is gone forever! You cannot
recall an expression that has been typed over.

Input Display
5] 300/5_
60.

Sixty seems like a reasonable number of groups, so you decide that each small
group will consist of five participants.

Recall is also useful to verify your last entry, especially when your results do not
make sense. For instance, suppose you had performed this calculation:

Input Display

(3] (8] (7] (5] [(enter) 6.

18

Using the PC-8 as a Calculator

Even a tired, overworked manager like you realizes that 6 does not seem to be a
reasonable result when you are dealing with hundreds of people! Recall your entry
using the[» .

Input Display

> 30/5

Because you recalled using the (%] the flashing cursor is now positioned over the
first character in the display. To correct this entry you wish to insert another
zero. Using the [, move the cursor until it is positioned over the zero. When
making an INSert, you position the flashing cursor over the character before
which you wish to make the insertion.

Input Display

(»] . 38/5

Use the INSert key to make space for the needed character.

Input Display
(sHiFT) (INS) 320/5

Pressing INSert moves all the characters one space to the right, and inserts a
bracketed open slot. The flashing cursor is now positioned over this open space,
indicating the location of the next typed input. Type in your zero. Once the entry
is corrected, display your new result.

Input Display
(8] 308/5
' 60.

On the other hand, suppose that you had entered this calculation:

Input Display

[(3)78 @ (B /)5 (enteR] 600.

19

Chapter 3

The result seems much too large. If you only have 309 people attending the
meeting, how could you have 60@ ’small groups”? Recall your entry using the (%

Input Display

) 3000/5

The flashing cursor is now positioned over the first character in the display. To
correct this entry eliminate one of the zeros. Using the [»] move the cursor to
the first zero (or any zero). When deleting a character, you position the cursor on
top of the character to be deleted.

Input Display

() 3000/5

Now use the DELete key to get rid of one of the zeros.

Input Display
300/5

Pressing DELete causes all the characters to shift one space to the left. It deletes
the character it is “‘on top of’" and the space the character occupies. The flashing
cursor stays in the same position indicating the next location for input. Since you
have no other changes to make, complete the calculation.

Input Display

60.

(Note: Pressing the SPaCe key, when it is positioned over a character, replaces the
character leaving a blank space. DELete eliminates the character and the space it
occupied.)

20

Using the PC-8 as a Calculator

Errors

Recalling your last entry is essential when you get an ERROR message. Let us
imagine that, unintentionally, you typed this entry into the PC-8:

Input Display

(3)(@{@]/1[7 [5][ENTER] ERROR 1

Naturally you are surprised when this message appears! ERROR 1 is simply the
computer’s way of saying, “I don't know what you want me to do here”. To find
out what the problem is, recall your entry using either the (€ or (] key.

Input Display

(<) (or [»]) 300/1/5

Whether you use the [« lor[® Jkey, the flashing cursor indicates the point at which
the computer got confused. And no wonder, you have too many operators! To
correct this error use the DELete key.

Input Display
60.

If, upon recalling your entry after an ERROR 1, you find that you have omitted
a character, use the INSert sequence to correct it.

When using the PC-8 as a calculator, the majority of the errors you encounter will

be ERROR 1 (an error in syntax). For a complete listing of error messages, see
APPENDIX A,

Chain Calculations

The PC-8 allows you to use the results of one calculation as part of the following
calculation.

Part of your responsibility in planning this conference is to draw up a detailed
budget for approval. You know that your total budget is $150.00 for each
attendant. Figure your total budget:

Input Display

(3@) @) * [1)(5)[8)[ENTER] 45000.

21

Chapter 3

Of this amount you plan to use 15% for the final night's awards presentation.
When performing chain calculations it is not necessary to retype your previous
results, but DO NOT ClLear between entries. What is the awards budget?

Input Display
(%) (7 (1) (5] A5000. x. 15_ |

Notice that as you type in the second calculation (% . 158), the computer auto-
matically displays the result of your first calculation at the left of the screen and
includes it in the new calculation. In chain calculations, the entry must begin with
an operator. As always, you end the entry with :

NOTE: The &} key cannot be used in the calculation. The ﬁ/j key should be
used as a character only.

Example: 45000 (% 15 - ERROR 1

Input Display
6750.

Continue allocating your budget. The hotel will cater your dinner for $4000:

Input Display
(=1 a1 (] (8) (&) 6750. —4000_
2750.

Decorations will be $1225:

Input Display

1M @) @)) e | 1525,

Finally, you must allocate $2200 for the speaker and entertainment:

Input Display
(=) (2] 2] (g) (@) r -675.

Obviously, you will have to change either your plans or your allocation of
resources!

22

Using the PC-8 as a Calculator

Negative Numbers

Since you want the awards dinner to be really special, you decide to stay with the
planned agenda and spend the additional money. However, you wonder what
percentage of the total budget will be used up by this item. First, change the sign
of the remaining sum:

Input Display
] =07 —675.%x—-1_
675.

Now you add this result to your original presentation budget:

Input Display

(+) (6] (7] (5] (8] [ENTER 7425,

Dividing by 45008 gives you the percentage of the total budget this new figure
represents:

Input Display

[+ (4] (33 (@) (8] [(@)[ENTER] 0.165

Fine, you decide to allocate 16.5% to the awards presentation.

Compound Calculations and Parentheses

In performing the above calculations, you could have combined several of these

operations into one step. For instance, you might have typed both these operations
on one line:

'675+6750/45000
Compound calculations, however, must be entered very carefully:

675+6750/45000 might be interpreted as

or

45000 45000

675+ 6750 675 + 6750

23

Chapter 3

When performing compound calculations, the PC-8 has specific rules of expres-
sion evaluation and operator priority (see APPENDIX D). Be sure you get the
calculation you want by using parentheses to clarify your expressions:

(675+6750) / 45000 or 675+ (6750 / 45000)

To illustrate the difference that the placement of parentheses can make, try these
two examples:

Input Display

GEeD) (67 (7] (5] [+)
(73 (5) (8 (ser) (7] (/]
(5] (2] (#) (8] [enten)

(6J 71051+ (swrm) () (6]
() e] (/) as] ele] 675. 15
(8] (8riET) (7] (ENTER]

(6}
(a)

#.165

Using Variables in Calculations

The PC-8 can store up to 26 simple numeric variables under the alphabetic chara-
cters A to Z. If you are unfamiliar with the concept of variables, refer to Chapter
4. You assign a value to variables with an Assignment Statement:

A=5

B = -2

You can also assign the value of one variable (right) to another variable {left):

C=A+3
D=E

A variable may be used in place of a number in any calculation.

Now that you have planned your awards dinner, you need to complete arrange-
ments for your conference. You wish to allocate the rest of your budget by
percentages also. First you must find out how much money is still available.
Assign a variable (R) to be the amount left from the total :

24

Using the PC-8 as a Calculator

Input Display

(R (=]Ja)5])(e (g])(a)] _

aalrslrales R=45000-7425_

i 37575. |

As you press the PC-8 performs the calculation and displays the new value
of R. You can display the current value of any variable by entering the character
of the variable:

Input Display

(R] 37575.

You can then perform calculations using your variable. The value of (R) will not
change until you assign it a new value.

You wish to allocate 60% of the remaining money to room rental:

Input Display
R Je]ie] Rx, 60_
22545,

Similarly, you want to allocate 25% of your remaining budget to conduct manage-
ment training seminars:

Input Display

(RJ (k] (]2 (5 [ENTER] 9393.75

Variables will retain their assigned values even if the machine is turned OFF — either
manually or automatically. Variables are lost only when:

% You assign a new value to the same variable.

* You type in NEW or NEW@ [ENTER] .
% You type in CLEAR (not the Clear key).

* The batteries are changed.

25

Chapter 3

There are certain limitations on the assignment of variables, and certain pro-
gramming procedures which cause them to be changed. See Chapter 4 for a discus-
sion of assignment. See Chapter 5 for a discussion of the use of variables in pro-
gramming.

Chained Calculations

In addition to combining several operators in one calculation, the PC-8 also allows
you to perform several calculations one after the other — without having to press
before moving on. You must separate the equations with commas, Only
the result of the final calculation is displayed. {Remember too, that the maximum
line length accepted by the computer is 8@ characters including J)

You wonder how much money would have been available for rooms if you had
kept to your original allocation of 15% for the awards dinner:

Input Display
(RIEIOEIEI* (4] 5]

9] (@) ERFT) () (R % .85%x45000, R x. 60—
(Jej(?)

Although the computer performs all the calculations in the chain, it displays only
the final result:

Input Display

22950.

To find the value of R used in this calculation, enter R:
Input Display

[(R] [enTeR) 38250.

Now It's Your Turn

This concludes our discussion of using the PC-8 as a calculator. Undoubtedly,
as you become more familiar with your machine’s capabilities and special features,
you will find many new and useful applications for this “smart"’ calculator.

But calculating is only one of the many potential uses of the PC-8. In the next
chapter we will examine the concepts and terms of the BASIC language, as it is

used by the PC-8. Then you can begin to create your own, unique, problemsolving
programs.

26

CHAPTER 4

CONCEPTS AND TERMS OF BASIC

In this chapter we will examine some concepts and terms of the BASIC language.
Because the many features of BASIC can be used also when used as a calculator,
some of these concepts are also useful for advanced calculator functions.

Numeric Constants

In Chapter 3 you entered simple numbers for use in calculations, without worrying
about the different ways that numbers can be represented, or the range of numbers
that the PC-8 can process. Some of you, however, may need or desire to know
more about how the PC-8 uses numbers.

The PC-8 recognizes three different ways to represent numbers:

X Decimals.
X Exponential or scientific notation.
X Hexadecimal numbers.

Decimal numbers are familiar to most of you. Scientific notation and hexadecimal
numbers may require some explanation.

Scientific Notation

People who need to deal with very large and very small numbers often use a special
format called exponential or scientific notation. In scientific notation a number
is broken down into two parts.

The first part consists of a regular decimal number between 1 and 10. The second
part represents how large or small the number is in powers of 10.

As you know, the first number to the left of the decimal point in a regular decimal
number shows the unit of 1's, the second shows the unit of 1@'s, the third the unit

of 10@s, and the fourth the unit of 100@'s. These are simply increasing powers of
10: . .

10°=1, 10' =10, 10> =100, 10° = 1000, etc.

Scientific notation breaks down a decimal number into two parts: the first part
shows what the numbers are, the second part shows how far a number is to the feft,
or right, of the decimal point. For example:

27

Chapter 4

1234 becomes 1.234 times 10° (3 places to the right)
654321 becomes 6.54321 times 10° (5 places to the right)
.0@0125 becomes 1.25 times 18~ (4 places to the left)

Scientific notation is useful for many shortcuts. You can see that it would take
a lot of writing to show 1.0 times 10%7 — a 1 and 87 zeros! But, in scientific
notation this number looks like this:

1.0 x 1087 or 1.0 E 87

The PC-8 uses scientific notation whenever numbers become too large to display
using decimal notation. This computer uses a special exponentiation symbol, the
[E to mean ““times ten to the'":

1234567890000 is displayed as 1.23456789 [12
000000000001 is displayed as 1. E —12

It you are unfamiliar with this type of notation, take some time to put in a few
very large and very small numbers to note how they are displayed. By the way,
if you want to enter a number in scientific notation, use key where
you want [displayed.

The largest number which the PC-8 can handle is ten significant digits, with two
digit exponents. In other words the largest number is:

9.999999999 E 99 = 999999999900000000000000AA3AG00000
0000000000000000000000000000000000
00000000000000000000PBACOB0A000

and the smallest number is:

9.999999999 E —99 = . 000000000000000000000000000000000
000000000000000000000000000003000
0000000000000000000000000000A0009
999999999

Under certain circumstances, when numbers will be used frequently, the PC-8
uses a special compact form. In these cases there are special limits imposed on the
size of numbers, usually either @ to 65535 or —32768 to +32767. Those with some
computer background will recognize both these numbers as the largest range which
can be represented in 16 binary bits. The circumstances in which this form is used
are noted in the Chapter 8.

28

Concepts and Terms of BASIC

Hexadecimal Numbers

The decimal system is only one of many different systems to represent numbers.
Another which has become quite important when using computers is the hexa-
decimal system. The hexadecimal system is based on 16 instead of 10. To write
hexadecimal numbers you use the familiar @ ~ 9 and 6 more “‘digits’’: A, B, C, D,
E, and F. These correspond to 1@, 11, 12, 13, 14, and 15. When you want the
PC-8 to treat a number as hexadecimal put an ampersand ‘&’ character in front of
the numeral:

&A =10
&10 = 16
&100 = 256
&FFFF = 65535

Those with some computer background may notice that the last number (65535)
is the same as the largest number in the special group of limits discussed in the
last paragraph. Hexadecimal notation is never required in using the PC-8, but
there are special applications where it is convenient,

String Constants

In addition to numbers, there are many ways that the PC-8 uses letters and special
symbols. These letters, numbers, and special symbols are called characters. These
characters are available on the PC-8:

1 23456789¢0
ABCDEFGHI JKLMNOPQRSTUVWXY/Z
!

T HS &)X+, -,/ ; <=>?20@+ 1~E
In BASIC a collection of characters is called a string. in order for the PC-8 to

tell the difference between a string and other parts of a program, such as verbs
or variable names, you must enclose the characters of the string in quotation marks

).

The foll owing are examples of string constants:

"“"HELLO"
“GOODBYE"”
“pc_gu

The foll owing are not valid string constants:

"“"COMPUTER No ending quote
“ISN"'T" Quote can’t be used within a string

29

Chapter 4

In addition to constants, whose values do not change during a program, BASIC
has variables, whose values can change. Variables are names used to designate
locations where information is stored. These variables are like the letters used
in algebraic equations. Just as there are numeric and string constants, there are
numeric and string variables.

Simple Numeric Variables

You have already used simple numeric variables when working with the PC-8 as
a calculator in Chapter 3. Simple numeric variables are used to store a single
number and are designated by a single letter (A — Z):

A=25
Cc 12.345

Simple numeric variables may take the same range of values as numeric constants.

Simple String Variables

String variables are used to hold strings (a collection of characters). They are
named by a single letter followed by a dollar sign:

A$ = ""ABCD” NOTE: Strings must be put between
C$ = “HELLO!" the quotation marks.

A string variable may be from @ to 7 characters long. If you try to store more than
7 characters in a string variable, only the first 7 will be saved. When a string
variable is empty, or its length is zero, it is called NUL or the NUL string.

Numeric Array Variables

For some purposes it is useful to deal with numbers as an organized group, such as
a list of scores or a tax table. In BASIC these groups are called arrays. An array
can be either one-dimensional, like a list, or two-dimensional, like a table. Array
names are designated in the same manner as simple variable names, except that
they are followed by parentheses. The elements of an array are referred to by a
number inside the parentheses; when the array is two dimensional there must
be two numbers separated by a comma:

A(5) The fifth element of a one-dimensional array A

B(3,2) The element in the third row and second column of a two dimen-
sional B array.

30

Concepts and Terms of BASIC

Arrays are created using the DIM verb or command. To create an array you give
its name and its size:

DIM X (5)
DIM Y (32)

Note that DIM X(5) actually creates an array with six entries:
X(@0) X(1) X{2) X({3) X(4) X(5)
Similarly DIM Y (2, 2) creates an extra @ row and a extra @ column:

Y (@,0) Y{@,1) Y (@,2)
Y (1,0) Y(1,1) Y{1,2)
Y (2,0) Y (2,1) Y(2,2)

This extra element, or row and column, is often used by programmers to hold
partial products during computations. For example, you might total the elements
of the X array by summing them into X(@).

The form and use of the DIM verb is covered in detail in Chapter 8.
Note: The A array does not have the extra @ element and does not need to be
DIMensioned (see section below on Preallocated Variables).

String Array Variables

String array variables have the same relationship to numeric array variables as

simple string variables have to simple numeric variables, — their names are the
same except for the addition of a dollar sign:

C$(5) The fifth string element in the array C$

With string arrays the length of each string will be 16 characters unless you spe-
cifically choose a different length in the DIM statement:

DIM X$(12) % 8 DIMensions a string array with 13 elements, each a string
8 characters long

Chapter 8 details the use of the DIM statement.

Preallocated Variables

Some of the variables which you will use most frequently have already been
allocated space in the PC-8's memory. Twenty-six locations are reserved for numeric
variables A — Z, string variables A$ — Z$, numeric array A(26) OR string array
A$(26). The locations are assigned as follows:

31

Chapter 4

Loc. Num. Var. Str. Var. Num. Arr. Var. Str.Arr. Var.

1 A A% A1) AS(1)

2 B B$ A(2) A$(2)

3 C Cc$ A(3) AS(3)

4 D D$ A(4) AS(4)
23 W wW$ A(23) A$(23)
24 X X$ A(24) A$(24)
25 Y Y$ A(25) AS$(25)
26 z z$ A(26) A$(26)

NOTE: There are only twenty-six locations and you must be careful not to use the
same location in two different ways.

If you use location 24 to store a numeric value in X and then try to print X$, you
will get an ERROR 9. Similarly, if you store a number in A(24) and then store
another number in X you will over-write the first number, but you will not get an
error message.

The A() and AS$() arrays are different from all other arrays — they don’t have
a zero element. It is possible to use DIM to make A({) or A$ () larger than 26,
but if you do, the first 26 elements will use the reserved locations while the ei-
ements from 26 on will be stored in a different part of the memory. The only
way that you will notice this, however, is that these 26 special locations are not
cleared when you RUN a program. All other array variables are cleared with
each new RUN. By using good programming practice and always initializing your
variables to the desired value, you will avoid any possible confusion.

1f DIM is used to allocate the A() or A$() arrays larger than 26 elements, there
are certain special conditions in which an error can cause the part of the array from
A(27) or A$(27) on to become inaccessible. [|f this occurs, it is necessary to redi-
mension the array.

Expressions

An expression is some combination of variables, constants, and operators which
can be evaluated to a single value. The calculations which you entered in Chapter
3 were examples of expressions. Expressions are an intrinsic part of BASIC
programs. For example, an expression might be a formula that computes an
answer to some equation, a test to determine the relationship between two quant-
ities, or a means to format a set of strings.

32

Concepts and Terms of BASIC

Numeric Operators

The PC-8 has five numeric operators. These are the arithmetic operators which you
used when exploring the use of the PC-8 as a calculator in Chapter 3:

+ Addition
— Subtraction

X Multiplication
/ Division
~ Power

A numeric expression is constructed in the same way that you entered compound
calculator operations. Numeric expressions can contain any meaningful combina-
tion of numeric constants, numeric variables, and these numeric operators:

(AXB)~2
A(2,3)+ A(3,4)+5.0-C
(A/B) * (C+D)

In certain circumstances the multiplication operator can be implied:

2A isthesameas 2 XA
7C isthesameas 7% C
ABC is the same as A XB*C

As you can see from the last example, there is a possibility that implied multipli-
cation could be confused with other BASIC words, so don’t use this form unless
the context is very clear. For example, when you enter ABS it does not mean
A % B x S but function to obtain absolute value.

String Expressions

String expressions are similar to numeric expressions except that there is only one
string operator -- concatenation {+). This is the same symbo! used for plus. When
used with a pair of strings, the + attaches the second string to the end of the first
string and makes one longer string. You should take care in making more complex
string concatenations and other string operations because the work space used
by the PC-8 for string calculations is limited to only 79 characters.

33

Chapter 4

NOTE: String quantitites and numeric quantities cannot be combined in the same
expression unless one uses one of the functions which convert a string value into a
numeric value or vice versa:

“15" + 10 is illegal
ll15ll + ll10!l is 11151011’ not 112511

Relational Expressions

A relational expression compares two expressions and determines whether the
stated relationship is True or False. The relational operators are:

> Greater Than
= Greater Than or Equal To
= Equals
<> Not Equal To
= Less Than or Equal To
< Less Than

The following are valid relational expressions:

A<B
C{(1,2)>=5
D(3)<>8

If A was equal to 10, B equal to 12, C(1, 2) equal to 6, and D{3} equal to 9, all of
these relational expressions would be True.

Character strings can also be compared in relational expressions. The two strings
are compared character by character according to their ASCII value starting at
the first character (see Appendix B for ASCII values). If one string is shorter than
the other, a @ or NUL will be used for any missing positions. All of the following
relational expressions are True:

“ABCDEF" = "“ABCDEF"
“ABCDEF"” <> "“ABCDE"
“ABCDEF"” > ""ABCDE"”

Relational expressions evaluate to either True or False. The PC-8 represents True
by a 1; False is represented by a @. In any logical test an expression which evaluates
to 1 or more will be regarded as True while one which evaluates to @ or less will be
considered False. Good programming practice, however, dictates the use of an
explict relational expression instead of relying on this coincidence.

Concepts and Terms of BASIC

Logical Expressions

Logical expressions are relational expressions which use the operators AND, OR,
and NOT. AND and OR are used to connect two relational expressions; the value
of the combined expression is shown in the following tables:

A AND B Value of A
True False
Value True True False
f
OB False False False
A OR B Value of A
True False
Value True True True
f
% False True False

{Note: Value of A and B must be @or 1)

® Decimal numbers can be expressed in the binary notation of 16 bits as follows:

DECIMAL BINARY NOTATION
NOTATION OF 16-BIT

32767 2111111111111

3 0000000000000011

2 2000000000000010
1 0000000000000001

o 0000000000000000
-1 TMM111111111111
-2 111'1111111111110

-3 1111111111111

_32768 10000000000000000
The negative (NOT) of a binary number 0000000000000001 is taken as follows:

NOT 0000000000000001

{Negative) — TMITII1IM1M1111110

35

Chapter 4

Thus, 1 is inverted to @, and @ to 1 for each bit, which is called ""to take negative
(NOT).”

Then, the following will result when 1 and NOT 1 are added together:

P000000000000001 (1)
+) 1111111111111110 (NOT 1)

IRRRRRRRRARRRRERENEH §

Thus, all bits become 1. According to the above number list, the bits become
—1 in decimal notation, thatis 1 + NOT 1= —1.
The relationship between numerical value X and its negative
(NOT X) is:
X+NOT X=-1
This results in an equation of NOT X =—-X-1
i.e. NOT X=—(X+1)
From the equation the following are found to result.

NOT @ = -1
NOT-1=¢
NOT —2=1

More than two relational expressions can be combined with these operators. You
should take care to use parentheses to make the intended comparison clear.

(A<9) AND (B>5)
(A>=10) AND NOT (A >20)
(C=5) OR (C=6) OR (C=17)

The PC-8 implements logical operators as “bitwise” logical functions on 16 bit
guantities. (See note on relational expressions and True and False). In normal
operations this is not significant because the simple 1 and @ (True and False) which
result from a relational expression uses only a single bit. 1f you apply a logical
operator to a value other than @ or 1, it works on each bit independently. For
example if Ais 17, and B is 22, (A OR B) is 23:

17 in binary notation is 10001
22 in binary notation is 10110

17 OR 22 is 18111 (1if 1 in either number, otherwise @)
10111 is 23 in decimal.

36

Concepts and Terms of BASIC

If you are a proficient programmer, there are certain applications where this type
of operation can be very useful. Beginning programmers should stick to clear,
simple True or False relational expressions.

Parentheses and Operator Precedence

When evaluating complex expressions the PC-8 follows a predefined set of priorities
to determine the operation sequence. This can be quite significant:
5+2%3 could be

5+2 =7 or 2%3
7%3 = 21 6+5

6
1

The exact rules of “‘operator precedence’’ are given in Appendix D.

To avoid having to remember all these rules and to make your program clearer,
always use parentheses to determine the sequence of evaluation. The above
example is clarified by writing either:

(5+2)%x3 or 5+ (2 %3)

Calculator Mode

In general, any of the above expressions can be used in the calculator mode as well
as when programming a BASIC statement. In the RUN mode an expression is
computed and displayed immediately. For example:

Input Display

(5> 3) AND (2 <6) I 1.]

The 1 means that the expression is True.

Functions

Functions are special components of the BASIC language which take one value and
transform it into another value. Functions act like variables whose value is deter-
mined by the value of other variables or expressions. ABS is a function which
produces the absolute value of its argument:

ABS (-5) is b5
ABS (6) is 6

37

Chapter 4

LOG is a function which computes the log to the base 10 of its argument.

LOG (100) is 2
LOG (1000) is 3

A function can be used any place that a variable can be used. Many functions do
not require the use of parentheses:

L.OG 100 is the same as LOG (100)

You must use parentheses for functions which have more than one argument.
Using parentheses always makes programs clearer.

See Chapter 8 for a complete list of functions available on the PC-8.

CHAPTER b

PROGRAMMING

in the previous chapter we examined some of the concepts and terms of the BASIC
programming language. In this chapter you will use these elements to create pro-
grams on the PC-8. Let us reiterate, however, this is not a manual on how to pro-
gram in BASIC. What this chapter will do is familiarize you with the use of BASIC
on your PC-8.

Programs

A program consists of a set of instructions to the computer. Remember the PC-8
is only a machine. It will perform the exact operations that you specify. You, the
programmer, are responsible for issuing the correct instructions.

BASIC Statements

The PC-8 interprets instructions according to a predetermined format. This format
is called a statement. You always enter BASIC statements in the same pattern,
Statements must start with a line number:

19: INPUT A
29: PRINT A X A
30: END

Each line of a program must have a unique line number — any integer between 1
and 999. Line numbers are the reference for the computer. They tell the PC-8
the order to perform the program. You need not enter lines in sequential order
(although if you are a beginning programmer, it is probably less confusing for you
to do so). The computer always begins execution with the lowest line number and
moves sequentially through the lines of a program in ascending order.

When programming it is wise to allow increments in your line numbering (1@, 20,
30, ... 10, 30, 50, etc). This enables you to insert additional lines if necessary.
CAUTION: Do not use the same line numbers in different programs. If you use
the same line number, the oldest line with that number is deleted when you enter
the new line,

BASIC Verbs

All BASIC statements must contain verbs. Verbs tell the computer what action to
perform. A verb is always contained within a program, and as such is not acted
upon immediately.

39

Chapter 5

10: INPUT A
20: PRINT A x A
30: END

Some statements require or allow an operand:

10: INPUT A
20: PRINT A XA
30: END

Operands provide information to the computer telling it what data the verb will
act upon. Some verbs require operands, with other verbs they are optional. Certain
verbs do not allow operands. (See Chapter 8 for a complete listing of BASIC verbs
and their use on the PC-8.)

BASIC Commands

Commands are instructions to the computer which are entered outside of a pro-
gram. Commands instruct the computer to perform some action with your
program or to set modes which effect how your programs are executed.

Unlike verbs, commands have immediate effects — as soon as you complete

entering the command (by pressing the key), the command will be
executed. Commands are not preceded by a line number:

RUN
NEW
RADIAN

Some verbs may also be used as commands. (See Chapter 8 for a complete listing
of BASIC commands and their use on the PC-8).

You may remember that when using the PC-8 as a calculator, it is set in the RUN
mode.

The RUN mode is also used to execute the programs you create.

The PROgram mode is used to enter and edit your programs.

Programming

Beginning to Program on the PC-8

After all your practice in using the PC-8 as a calculator you are probably quite
at home with the keyboard. From now on, when we show an entry, we will not
show every keystroke., Remember to use to access characters above the
keys and END EVERY LINE BY PRESSING THE KEY.

Now you are ready to program. Set the computer to the PROgram mode and enter
this command:

Input Display

NEW >

The NEW command clears the PC-8's memory of all existing programs and data.

The prompt appears after you press , indicating that the computer is
awaiting input.

Example 1 — Entering and Running a Program
Make sure the PC-8 is in the PRO mode and enter the following program:

Input Display

10 PRINT “HELLO" 10:PRINT “HELLO"”

Notice that when you push the PC-8 displays your input, automatically
inserting a colon (:) between the line number and the verb. Verify that the state-
ment is in the correct format.

Now change the mode to RUN by pressing the Mocg key:

Input Display

RUN ' HELLO

Since this is the only line of the program, the computer will stop executing at this

point. Press to get out of the program and reenter RUN if you wish
to execute the program again.

41

Chapter 5

Example 2 — Editing a Program

Suppose you wanted to change the message that your program was displaying,
that is you wanted to edit your program. With a single line program you could just
retype the entry, but as you develop more complex programs editing becomes
a very important component of your programming. Let’s edit the program you
have just written.

Are you still in the RUN mode? If so return to the PROgram mode.

You need to recall your program to edit it. Use the Up Arrow (1) to recall your
program. |If your program was completely executed, the ([t will recall the last
line of the program. If there was an error in the program, or if you used the
BREAK (} key to stop execution, the (1] will recall the line in which
the error or BREAK occurred. To make changes in your program use the [t] to
move up in your program (recall the previous line) and the to move down in
your program (display the next line). If held down the (1] and the (1) will
scrolf vertically, that is,they wil! display each line moving up or down in your program.

You will remember that to move the cursor within a line you use the » (right
arrow) and « (left arrow). Using the » position the cursor over the first character
you wish to change:

Input Display
1 10: PRINT “HELLO"
q4qqd 10 PRINT “HELLO"”

Notice that the cursor is now in the flashing block form indicating that it is “on
top of" an existing character. Type in:

Input Display

GOOD"! 19 “GOOD"!_

Don’t forget to press at the end of the line. Change to the RUN mode.

Input Display

RUN ERROR 1 IN 19 €

42

Programming

This is a new kind of error message. Not only is the error type identified (syntax
error) but the line number in which the error occurs is also indicated.

Press CL and change back to the PROgram mode. You must be in the PROgram
mode to make changes in a program. Using (X , recall the last line of your program.

Input Display

1 10: PRINT “GOOD" |

The flashing cursor is positioned over the problem area. In Chapter 4 you learned
that when entering string constants in BASIC all characters must be contained
within quotation marks. Use the DELete key to eliminate the ‘“1"":

Input Display

DEL 10 PRINT “GOOD " _

Now put the ! in the correct location, When editing programs, DELete and INSert
are used in exactly the same way as they are in editing calculations (See Chapter 3).
Using the [«] position the cursor on top of the character which will be the first
character following the insertion.

Input Display

< 10 PRINT “GOOD

Press the INSert key. A : will indicate the spot where the new data will be
entered:

Input Display

INS 19 PRINT “GOODZ"

Type in the |. The display looks like this:

Input Display

! 10 PRINT “GOOD! "

43

Chapter 5

Remember to press so the correction will be entered into the program.

NOTE: If you wish to DE Lete an entire line from your program just type in the
line number and the original line will be eliminated.

Examples 3 — Using Variables in Programming

If you are unfamiliar with the use of numeric and string variables in BASIC, re-read
these sections in Chapter 4.

Using variables in programming allows much more sophisticated use of the PC-8's
computing abilities.

Remember, you assign simple numeric variables using any letter from A to Z:
A=25

To assign string variables you also use a letter, followed by a dollar sign. Do not use
the same letter in designating a numeric and a string variable. You cannot designate
A and A$ in the same program.

Remember that simple string variables cannot exceed 7 characters in length:

A$ = “TOTAL"”

The values assigned to a variable can change during the execution of a program,
taking on the values typed in or computed during the program. One way to assign
a variable is to use the INPUT verb. In the following program the value of A$
will change in response to the data typed in answering the inquiry “WORD?".
Enter this program:

10 INPUT “WORD?""; A$
20 B= LEN (A%)
30 PRINT “WORD_JIS " B, “ LTRS"
L S
40 END means space

Before you RUN the program, notice several new features. Line 30 of this program
exceeds the 16 character maximum of the PC-8 display. When a line is longer
than 16 characters {up to the 79 character maximum), PC-8 moves the charac-
ters to the left as the 16 character maximum is exceeded. This does not destroy the
previous input. This move to the left is referred to as horizontal scrolling.

The second new element in this program is the use of the END statement to
signal the completion of a program. END tells the computer that the program
is completed. It is always good programming practice to use an END statement.

44

Programming

As your programs get more complex you may wish to review them before you
begin execution. To look at your program, use the LIST command. LIST, which
can only be used in the PROgram mode, displays programs beginning with the
lowest line number,

Try listing this program:

Input Display

LIST 10: INPUT “WORD?”

Use the (1] and (3] arrows to move through your program until you have reviewed
the entire program. To review a line which contains more than 16 characters
move the cursor to the extreme right of the display and the additional characters
will appear on the screen. After checking your program, run it:

RUN WORD? _
HELP [(ENTER] WORD 1S 4. LTRS
>

This is the end of your program. Of course you may begin it again by entering
RUN. However, this program would be a bit more entertaining if it presented more
than one opportunity for input. We will now modify the program so it will keep
running without entering RUN after each answer.

Return to the PRO mode and use the up or down arrows {or LIST) to reach line

40.

You may type 40 to Delete the entire line or use the » to position the cursor
over the E in End. Change line 4@ so that it reads:

40: GOTO 10
Now RUN the modified program.

The GOTO statement causes the program to loop (keep repeating the same opera-
tion). Since you put no limit on the loop it will keep going forever {an “infinite”
loop). To stop this program hit the BREAK ([erx!) key.

45

Chapter 5

When you have stopped a program using the key, you can restart it using
the CONT command. CONT stands for CONTinue. With the CONT command the
program will restart on the line which was being executed when the [Brx] key
was pressed.

Example 4 — More Complex Programming

The following program computes N Factorial {N!}). The program begins with 1
and computes N! up to the limit which you enter. Enter this program.

100 F=1: WAIT 128
110 INPUT “LIMIT? ;L
120 FOR N=1TO L
130 F=F %N

148 PRINT N,F

150 NEXT N

160 END

Several new features are contained in this program. The WAIT verb in line 100
controls the length of time that displays are held before the program continues.
The numbers and their factorials are displayed as they are computed. The time
they appear on the display is set by the WAIT statement to approximately 2
seconds, instead of waiting for you to press

Also in line 100, notice that there are two statements on the same line separated
by a colon (:). You may put as many statements as you wish on one line, separat-
ing each by a colon, up to the 8@ character maximum including [ENTER]. Multiple
statement lines can make a program hard to read and modify, however, so it is
good programming practice to use them only where the statements are very simple
or there is some special reason to want the statements on one line.

Also in this program we have used the FOR verb in line 120 and the NEXT verb
in line 160 to create a loop. In Example 3 you created an “infinite” loop which
kept repeating the statements inside the loop until you pressed the [Brx] key.
With this FOR/NEXT loop the PC-8 adds 1 to N each time execution reaches
the NEXT verb. It then tests to see if N is larger than the limit L. If N is less
than or equal to L, execution returns to the top of the loop and the statements
are executed again. |f N is greater than L, execution continues with line 160 and
the program stops.

46

Programming

You may use any numeric variable in a FOR/NEXT loop. You also do not have

to start counting at 1 and you can add any amount at each step. See Chapter
8 for details.

We have labelled this program with line numbers starting with 13@. Labelling
programs with different line numbers allows you to have several programs in
memory at one time. To RUN this program instead of the one at line 1@ enter:

RUN 100

in addition to executing different programs by giving their starting line number,
you can give programs a letter name and start them with the DEF key (see Chapter
6).

You will notice that while the program is running, the BUSY indicator is lit at
those times that there is nothing on the display. RUN the program a few more
times and try setting N at several different values.

Storing Programs in the Memory

Programs remain in memory when the computer is turned off whether manually
or automatically. Even if you use the , Clear or CA keys, the programs will
remain.

Programs are lost from memory when you perform the following actions:

* You enter NEW or NEW @ before beginning programming.

X You create a new program using the SAME LINE NUMBERS as a program
already in memory.

X You change the batteries.

This brief introduction to programming on the PC-8 should serve to illustrate
the exciting programming possibilities of your new computer.

47

Chapter 5

The following tables show the number of bytes used to define each variable and the
number used by each program statement,

Variable Variable name Data
Numeric array variable 6 bytes 8 bytes
String array variable 6 bytes Specified number of bytes™

* For example, if DIM Z$ (2, 3) % 10 is specified, 12 variables, each capable of
storing 10 characters, are reserved. This requires 6 bytes (variable name) + 10
bytes (number of characters) x 12 = 126 bytes.

Element

Line number

Statement & function

Others

Number of bytes used

2 bytes

1 byte

1 byte

Remaining Number of Bytes and Number of Usable Variables

The number of remaining bytes in the program/data area can be determined by

operating:

MEM

To determine the number of numeric variables which can be reserved by the DIM
statement use the following formula:

(MEM —6) /8

t_When calculating the number of string variables, replace this
"8 with the necessary number of characters.

48

CHAPTER 6

SHORTCUTS

The PC-8 includes several features which make programming more convenient
by reducing the number of keystrokes required to enter repetitive material.

One such feature is in the availability of abbreviations for verbs and commands
(See Chapter 8)

This chapter discusses the additional feature which can eliminate unnecessary
typing — the DEF key.

The DEF Key and Labelled Programs

Often you will want to store several different programs in the PC-8 memory at
one time. (Remember that each must have unique line numbers). Normally,
to start a program with a RUN or GOTO command, you need to remember the
beginning line number of each program (see Chapter 8). But, there is an easier way !
You can label each program with a letter and execute the program using only two
keystrokes. This is how to label a program and execute it using DEF:

NOTE: Put a fabel on the first line of each program to which you can refer. The
label consists of a single character in quotes, followed by a colon:

10: “A"”: PRINT “FIRST”
20: END

80: *‘B’: PRINT “SECOND”
90: END

Any one of the following characters can be used: A, S, D, F, G, H, J, K,
L, =, Z, X, C,V, B, N, M, and SPC. Notice that these are the keys in the last
two rows of the alphabetic portion of the keyboard.

NOTE: To execute the program, instead of typing RUN 8@ or GOTO 1@, you need

only press the key and then the letter used as a label. In the above example,
pressing and then ‘B’ would cause ‘SECOND’ to appear on the display.

When DEF is used to execute a program, variables and mode settings are affected in
the same way as when GOTO is used. See Chapter 8 for details.

49

Chapter 6

One template is provided with the PC-8. You can use this template to help you
remember frequently used DEF key assignments. After you have labelled the
programs, use a pencil to mark the template so you will know what is associated
with each key. You can then execute programs using the two-keystroke operation.

For example, if you have one group of programs which you often use at the same
time, label the programs with letters and mark the template so that you can easily
begin execution of any of the programs with two keystrokes.

Example: AVER:

DoooOoOooooOog
DoOoOoO0OooOoC 3

Two strips of double-sided tape are provided with your unit. Use these to keep the
template in place.

50

CHAPTER 7

USING THE OPTIONS

The PC-3 Printer/Cassette Interface (Cat. No. 26-3591) allows you to add a printer
and cassette interface to your Tandy PC-8 Pocket Computer.
The PC-3 Printer/Cassette Interface features:

* 24-character-wide thermal printer with approximately 48-line-per-minute
print speed.

Convenient paper feed and tear bar.

Simultaneous printing of calculations as desired.

Easy control of display or printer output in BASIC,

Cassette interface to connect to any standard cassette recorder.

Manual and program control of recorder for storing programs and data.
Filenames and passwords on tape for control and security.

Built-in rechargeable Nickel-Cadmium batteries for portability.

Recharger supplied.

Introduction to the Printer/Cassette Interface

Before you begin to use the PC-3 Printer/Cassette Interface you should first become
familiar with its components. Examine the front of the machine:

PAPER TAPE PINS FOR AC ADAPTER
COMPARTMENT COMPUTER JACK
PAPER FEED CHECK CONNECTOR
BUTTC])N {For service only)
| =
/ Eik
o T
— ——— B ;0
He)
a
REMOTE PHINTER | OW BATTERY '
=
C -]
‘ |
LOW BATTERY INDICATOR CASSETTE RECORDER
PRINTER SWITCH JACK

REMOTE SWITCH

Figure 14. Printer/Cassette Interface (Front View)

51

Chapter 7

REMOTE switch. This switch is used to operate the Cassette Recorder
manually.

PRINTER ON/OFF. This switch is used to turn the printer on and off to
conserve batteries when not in use.

LOW BATTERY indicator. This indicates when there is insufficient power
to operate the PC-3 Printer/Cassette Interface.
Paper feed button. Pressing this key will feed the paper in the printer.

PC-8 POCKET COMPUTER

9 O 3 @ AC ADAPTER
M ~M
v_‘ ¢ 1,\0.”0“ JACK

| 1

! REMOTE JACK
PC-3 PRINTER/ MICROPHONE JACK
CASSETTE INTERFACE L EARPHONE JACK

Figure 15. PC-3 Printer/Cassette Interface (Right Side View)

The PC-3 Printer/Cassette Interface is powered by a rechargeable Nickel Cadmium
battery. It is necessary to recharge the battery when the low battery indicator
comes ON.

To recharge the battery, turn the Computer and Printer/Cassette Interface power
OFF, connect the AC adapter to the Printer/Cassette Interface, and plug the AC
adapter into a wall outlet. (See the diagram.) It will take about 15 hours before
the battery is fully charged.

Important Note! Using any AC adapter other than the one supplied may damage
the Printer/Cassette Interface.

PC-8 POCKET COMPUTER AC ADAPTER

PLUG ‘9

AC ADAPTER CONNECTING
JACK OF PC-3 PRINTER/
CASSETTE INTERFACE WALL QUTLET

PC-3 PRINTER/CASSETTE__
INTERFACE

Figure 16. How to Connect the AC Adapter

52

Using the Options

Always connect the recharger to the Printer/Cassette Interface first. Then plug the
recharger into the wall socket.

When the batteries in the PC-3 Printer/Cassette Interface become discharged, the
low battery indicator on the front of the unit lights up and the unit will not func-
tion. At this point, you must recharge the batteries. When you first receive your
Printer/Cassette Interface it is likely that the batteries insufficiently charged due to
the time spent in storage. The unit will require charging before its first use.

NOTE: When the Computer is used with the Printer/Cassette Interface and the
battery power of the Computer decreases, the power will be supplied to the
Computer from the Printer/Cassette Interface.

Connecting the PC-8 Pocket Computer to the PC-3 Printer/Cassette
interface (Cat. No. 26-3591)

To connect the PC-8 pocket Computer to the PC-3 Printer/Cassette Interface, use
the following procedure:

1. Turn OFF the power in both units.

NOTE: It is important that the power be OFF on the Computer before
connecting the units, or the Computer may “hang up”. If this should occur,
use the RESET button to clear the Computer.

2. Place the Computer on the Printer/Cassette Interface shown in Fig. 17.

. Lay the Computer down flat.

4. Gently slide the Computer to the left so that the pins on the Printer/Cassette
Interface are inserted into the plug on the Computer,
DO NOT FORCE the Computer and Printer/Cassette Interface together. If
the two parts do not connect easily, STOP and check to see that the parts are
correctly aligned.

w

Figure 17. Figure 18.

53

Chapter 7

6. To use the Printer, turn on the PC-8 Computer power switch, and then the
Printer switch.
Press the key.
If the key is not pressed, the Printer may not operate.

Note: If executed when the Printer switch is set at the OFF position, printing
causes an error (ERROR code 8). (The low battery indicator may light up at this
point.)

In this case, turn the Printer switch ON, and press the [CL) key. Then, execute
the printing again.

Loading the Paper

(1) Turn off the Printer switch.
(2) Open the paper cover. (Fig. 19)

=

Figure 19. Paper cover

(3) Insert the leading edge of the roll of paper into the slot located in the paper
tape compartment. (Fig. 20) (Fig. 21)
{Any curve or crease near the beginning of the paper makes insertion difficult.)

AL

Figure 21.

Figure 20.

54

Using the Options

NOTE: Use of irregular paper tape may cause Paper tape rol
irregular paper feeding or paper misfeed. =)
Therefore, be sure to tighten the roll
before using, as shown in Figure 22. Wrong pigure 22. Right

(4) Turn on the Printer switch and press the paper feed button until the paper
comes out of the Printer mechanism. {Fig. 23)

Paper feed button
Paper cutter

Figure 23. Printer switch

(5) tnstall the roll of paper into the compartment.
(6) Close the paper cover. (Fig. 24.}

Paper cover

Roll of Paper

Figure 24.

® To release paper from the printer, cut the paper on the side of the paper roll
compartment and then pult it straight out to the cutter side.

Do not pull the paper backwards, as this may cause damage to the Printer
mechanism.

CAUTION:

Paper tape is available wherever the PC-3 Printer/Cassette Interface is sold.
Please order replacement paper tape at your local Radio Shack store. Please
specify Model name when ordering. The paper tape is specifically designed for
this unique Printer. Use of any other paper tape may cause damage to the unit.

55

Chapter 7

Using the Printer

If you are using the PC-8 Computer as a calculator, you may use the PC-3 Printer
to simultaneously print your calculations. This is easily accomplished by pressing
the key and then the key (P<>NP). (The printer indicator “P"
will be displayed. If not, press the [smrt] and [ENTER] keys. Check to see that
the mode switch is set at the RUN position.) After this, when you press at
the end of a calculation, the contents of the display will be printed on one line and

the results will be printed on the next. For example:
WW;:N]

You may print output on the Printer from within BASIC programs by using the
LPRINT statement (see Chapter 8 for details). LPRINT functions in exactly the
same fashion as the PRINT statement, except that the Printer accepts text that is
24 characters wide. The only difference is that, if you PRINT something to the
display which is longer than 16 characters, there is no way for you to see the extra
characters. With the LPRINT verb, the extra characters will be printed on a second
and possibly a third line, as is required.

Input Paper

300/ 50 [35\6750

Programs which have been written with PRINT can be converted to work with the
Printer by including a PRINT=LPRINT statement in the program (see Chapter 8 for
details). ALL PRINT statements following this statement will act as if they were
LPRINT statements. PRINT=PRINT will reset this condition to its normal state.
This structure may also be included in a program in an IF statement allowing a
choice of output at the time the program is used.

10 INPUT "“DISP./PRINTER”; A$
20 IF ASC (A$)=8@ THEN PRINT = LPRINT

You may also list your programs on the Printer with the LLIST command (see
Chapter 8 for details). If used without line numbers, LLIST will list all program
lines currently in memory in their numerical order by line number. A line number
range may also be given with LLIST to limit the lines which will be printed. When
program lines are fonger than 24 characters, two or more lines may be used to print
one program line. The second and succeeding lines will be indented four characters
so that the line number will clearly identify each separate program line.

56

Using the Options

Caution:

In case an error (ERROR code 8) occurs due to a paper misfeed, tear off the
paper tape, and pull the remaining part of the paper tape completely out of the
Printer. Then press the [CL] key to clear the error condition.

When the Printer/Cassette Interface is exposed to strong external electrical noise,
it may print numbers at random. If this happens, depress the key to stop
the printing; then press the [CL] key.

Pressing the [CL] key will return the Printer to its normal condition.

When the Printer misfeeds a paper or is exposed to strong external
electrical noise while printing, it may not operate normally and only the
symbol “BUSY" is displayed. If this happens, depress the key to
stop the printing. (Adjust the paper so that it will feed correctly.) Press
the key.
When the PC-3 Printer/Cassette Interface is not in use, turn off the Printer
switch to save the battery life.
Even while printing under the LPRINT command, the entry can be executed
when an INPUT, INKEY$ or PRINT command is performed.
{n this case, however, the Printer will stop if the [CcL] key is pressed. There-
fore, be sure to press the key upon completion of printing.

Using a Cassette Recorder

With the Cassette Recorder connected, you can use the foilowing commands:

CSAVE Saves the contents of a program on tape.
CLOAD Retrieves a program from tape.

CLOAD? Compares the program on tape with the contents of memory to
insure that you have a good copy.

MERGE Combines a program on tape with one already in memory.
PRINT# Saves the contents of variables on tape.

INPUT# Retrieves the contents of variables from tape.

CHAIN Starts execution of a program which has been stored on tape.

Programs may be assigned filenames which will be stored on the tape. This allows
the unambiguous storage of many programs on one tape. Programs can then be
retrieved by name and the tape will be searched to find the appropriate file. If
programs have been password-protected in memory, they cannot be stored on tape,
but a password can be assigned at the time that unprotected programs are CSAVEd.
Such password-protected programs can be used by another person, but they will
not be able to LIST or modify the programs in any way.

See Chapter 8 for details on all these verbs and commands.

57

Chapter 7

When a program or data is recorded on tape, it will be preceded by a high-pitched
tone of approximately 7 seconds., This tone serves to advance the tape past any
leader and to identify the beginning of each program or set of data.

When searching for a filename, the tape can read only in a forward direction. This
search is relatively slow, so it is sometimes preferable to keep track of program loca-
tions by using the tape counter. Using fast forward, rewind or play, the tape can
be manually positioned to the leader tone area of the correct program before the
retrieval is started. While scanning the tapes, you will be able to hear the high tones
which begin each program. In between these high tones will be a mixed high and
low tone sound which indicates programs or data.

See the Operation Manual supplied with the PC-3 Printer/Cassette Interface for
more detailed operating instructions.

PC-3 PRINTER/CASSETTE
INTERFACE CASSETTE RECORDER

Figure 25. Cassette Cables and Figure 26. Recorder Connected
Interface Jacks to Interface

® To transfer programs and data from the tape, use the tape recorder with which

the tape was prerecorded. A tape recorder, if different from that used for re-
cording, may cause no transfer of the prerecorded tape.

Care and Maintenance

* Be sure that the power is OFF on both units when connecting or disconnecting
the Printer/Cassette Interface and the Computer.

The Printer should be operated on a level surface.

The unit should be kept away from extreme temperatures, moisture, dust,
and loud noises.

Use a soft, dry cloth to clean the unit. DO NOT use solvent or a wet cloth.
Keep foreign objects out of the unit.

58

Using the Options

If the batteries become low, or if the Printer/Cassette Interface is subjected to
strong noise, the unit may cease to function and the Pocket Computer may ““hang
up”. This can also occur if the units are connected and the power on the Printer/
Cassette Interface is not turned on when an LPRINT or LLIST command is used.

In some cases, ERROR 8 may be displayed on the Computer.

The ClLear key may usually be used to clear this condition, but in some cases a
RESET may be required. Be sure to restore adequate power to the Printer/Cassette
Interface before attempting to use it again.

The procedures for the Computer and the Cassette Recorder operation

1. Saving

(1) Turn off the REMOTE switch.

{2) Put a tape into the Cassette Recorder,

(3) Turn on the REMOTE switch.

(4) Depress the RECORD button.

{b) With the same command which saves your program, you must give the pro-
gram a “filename”. This is for reference purposes. Your filename cannot
be longer than 7 characters. To save the program with a filename, type:

CSAVE " PRO-1 "

Your program will be saved with the name “PRO-1"". You can assign any name you
desire, whatever is easiest for you to keep track of. Also, note that there is a 7-
character length limit for your filename. If the name is longer than 7 characters, the
excess is ignored. A good practice is to maintain a program log, which includes the
program name, starting and stopping locations on tape (use the counter numbers),
and a brief description of what the program does.

Press the key. If your tape recorder has a monitor feature, you should
hear a shrill buzzing sound, and the tape should be turning. Also, the “BUSY"
indicator -should light up. This tells you that the computer is “busy” transferring
your program from memory to the tape. If this does not happen, start again from
the beginning of the section.

Once the computer arrives at the end of the program, the “BUSY" indicator light
will go off, the recorder will stop, and the ““prompt” will re-appear on the display.
In order to insure that this has in fact been accomplished, read it back into memory
from the tape as explained in the next section.

59

Chapter 7

2. Collating the Computer and Tape Contents
Now that your program is saved on tape, you will no doubt want to see if it
is really there. To do this is relatively simple; use the CLOAD? command.

(m
(2)

(3)
(4)
(5)

Turn off the REMOTE switch to clear remote control functions.
Rewind the tape to the place at which you started, again using the number
counter.
Turn on the REMOTE switch to set remote control functions.
Depress the PLAY button.
To collate the program with a filename type:
CLOAD ? “PRO-1 "

Press the key.

The computer compares the CSAVEd program with the one in its memory. If all
went well, it will display the “prompt” and end its check. If all did not go well,
an error message will be displayed, usually ERROR 8. This tells you that the pro-
gram on tape is somehow different from the program in the computer’s memory.
Erase that portion of the tape and start again.

3. Transfer from Tape

(1)
2)

(3)
(4)

(5)
(6)

(7

(8)

Turn off the REMOTE switch.
Rewind the tape to the place at which you started, again using the number
counter.
Stop rewinding.
Turn the REMOTE switch back ON.
Press the PLAY button.
Type:

CLOAD “PRO-1 "
and press the key.
(Remember ““PRO-1" is the filename you have given to your program. If
you saved the program under another name, you must use that name instead
of PRO-1.)
The “BUSY" indicator will now light up, and the program will be brought
back into the Computer’s memory for use.
The cassette retains a copy of the program, so you can CLOAD the same
program over and over again!
If an error message (ERROR 8) is displayed while loading, start again from
step (1) in this section, “‘Transfer from Tape.”

Using the Options

Precautions for collation and transfer
The program is recorded on tape as illustrated below:

«— Tape transport direction

HEHE i

[

t 4
- |
r(— :e?::iz:?r(‘gleep) T Program

Filename

Figure 27.

When the tape is played back, its non-signal section produces a specific con-

tinuous beep, while the filename and program-recorded sections cause an inter-
mittent beep.

If collation or transfer was not done properly, the “BUSY"’ symbol does not disap-

pear and the tape does not stop. To stop the tape operation, press the key.
Then, try again from the beginning.

61

CHAPTER 8

BASIC REFERENCE

The following chapter is divided into three sections:

Commands: Instructions which are used outside a program to change the
working environment, perform utilities, or control programs.

Verbs: Action words used in programs to construct BASIC statements.

Functions: Special operators used in BASIC programs to change one variable
into another.

Commands and verbs are arranged alphabetically. Each entry is on a separate page
for easy reference. The contents of each section is shown in the tables below so
that you can quickly identify the category to which an operator belongs. Func-
tions are grouped according to four categories and arranged alphabetically within

category.

Program Control Variables Control
CONT CLEAR
GOTO* DIM*

NEW

NEW 0 Angle Mode Control

RUN DEGREE*
GRAD*

Cassette Control RADIAN*
CLOAD
CLOAD? Other
CSAVE . PASS*
INPUT # RANDOM*
MERGE X USING*
PRINT # WAIT*

Debugging
LIST
LLIST
TROFF*

TRON*

*These commands are also BASIC verbs. Their effect as commands is identical to
their effect as verbs so they are not described in the command reference section.
See the verb reference section for more information.

62

Control and Branching

CHAIN

END
FOR...TO...STEP
GOsuB
GOTO

IF ... THEN
NEXT

ON ...GOSUB
ON...GOTO
RETURN
STOP

Assignment and Declaration

CLEAR
DIM
LET

Functions

Pseudovariables

INKEYS
MEM
P1

'String Functions

ASC
CHRS$
LEFTS
LEN
MID$
RIGHTS
STR$
VAL

63

BASIC Reference

Input and Qutput
AREAD
CSAVE
DATA
INPUT
INPUT #
LPRINT
PAUSE
PRINT
PRINT #
USING
READ
RESTORE
WAIT

Other
DEGREE
GRAD
RADIAN
RANDOM
REM
TROFF
TRON

Numeric Functions

ABS INT
ACS LOG
ASN LN

ATN RND
COS SGN
DEG SIN

DMS SQR
EXP TAN

Commands

CLOAD
COMMANDS |
1 CLOAD

2 CLOAD ’‘filename”

Abbreviations: CLO., CLOA.
See also: CLOAD?, CSAVE, MERGE, PASS

The CLOAD command is used to load a program saved on cassette tape. It can
only be used with the optional PC-3 Printer/Cassette Interface (26-3591).

Use

The first form of the CLOAD command clears the memory of existing programs
and loads the first program stored on the tape, starting at the current position.

The second form of the CLOAD command clears the memory, searches the tape for
the program whose name is given by "“filename’’, and loads the program.

CLOAD Loads the first program from the tape.
CLOAD "PRO3"" Searches the tape for the program named ‘PRO3’ and loads it.
Notes:

1. If the designated file name is not retrieved, the computer will continue to search
the file name even after the tape reaches the end. In this case, stop the retrieval
function by pressing the [Sﬁi key. This also applies to MERGE, CHAIN,
CLOAD? and INPUT # commands to be described later.

2. if an error occurs during CLOAD or CHAIN command (to be described later)
execution, the program stored in the computer will be invalid.

Commands
CLOAD?

1 CLOAD?

2 CLOAD? ‘filename”

Abbreviations: CLO.?, CLOA.?

See also: CLOAD, CSAVE, MERGE, PASS

The CLOAD? command is used to compare a program saved on cassette tape with
one stored in memory. It can only be used with the optional PC-3 Printer/Cassette
Interface.

Use

The first form of the CLOAD? command compares the program stored in memory
with the first program stored on the tape, starting at the current position.

The second form of the CLOAD? command searches the tape for the program whose
name is given by ‘“filename’’ and then compares it to the program stored in
memory.

CLOAD? Compares the first program from the tape with the one in
memory.

CLOAD? "“PRO3"” Searches the tape for the program named ‘PRO3’ and com-
pares it to the one stored in memory.

65

Commands
CONT

1 CONT

Abbreviations: C., CO., CON.
See also: RUN, STOP verb

The CONT command is used to continue a program which has been temporarity
halted.

Use

When the STOP verb is used to halt a program during execution, the program can
be continued by entering CONT in response to the prompt.

When a program is halted using the (srq] key, the program can be continued by
entering CONT in response to the prompt.

CONT Continues an interrupted program execution.

66

Commands
CSAVE

1 CSAVE

2 CSAVE ‘‘filename”’

3 CSAVE , “password’’

4 CSAVE ‘“‘filename’’, ‘password"’

Abbreviations: CS., CSA., CSAV.,
See also: CLOAD, CLOAD?, MERGE, PASS

The CSAVE command is used to save a program to cassette tape. It can only
be used with the optional PC-3 Printer/Cassette Interface.

Use

The first form of the CSAVE command writes all of the programs in memory
on to the cassette tape without a specified file name.

The second form of the CSAVE command writes all of the programs in memory
on to the cassette tape and assigns the indicated file name.

The third form of the CSAVE command writes all of the programs in memory
on to the cassette tape without a specified file name and assigns the indicated
password. Programs saved with a password may be loaded by anyone, but only
someone who knows the password can list or modify the programs. (See discussion
under PASS command).

The fourth form of the CSAVE command writes all of the programs in memory
on to the cassette tape and assigns them the indicated file name and password.

CSAVE ““PRO3”, "SECRET"” Saves the programs now in memory on to the

tape under the name ‘PRO3’, protected with the
password ‘SECRET".

67

Commands
GOTO

1 GOTO expression

Abbreviations: G., GO., GOT.
See also: RUN

The GOTO command is used to start execution of a program.

Use

The GOTO command can be used in place of the RUN command to start program
execution at the line number specified by the expression.

GOTO differs from RUN in five respects:

1) The value of the interval for WAIT is not reset.

2} The display format established by USING statements is not cleared.
3) Variables and arrays are preserved.

4) PRINT = LPRINT status is not reset.

5) The pointer for READ is not reset.

Execution of a program with GOTO is identical to execution with the [DEF] key.

GOTO 100 Begins execution of the program at line 100,

Commands
LIST

1 LIST
2 LIST expression

Abbreviations: L., LI., LIS.
See also: LLIST

The LIST command is used to display a program.

Use

The LIST command may only be used in the PROgram mode. The first form of
the LIST command displays the statement with the lowest line number.

The second form displays the statement with the nearest line number greater than

the value of the expression. The Up Arrow and Down Arrow keys may then be
used to examine the program.

LIST 100 Displays line number 100.

69

Commands
LLIST

1 LLIST
2 LLIST expression 1, expression 2

Abbreviations: LL., LLI., LLIS.
See also: LIST

The LLIST command is used for printing a program on the optionat PC-3 Printer/
Cassette Interface.

Use
The LLIST command may only be used in the PROgram mode.

The first form prints all of the programs in memory.

The second form prints the statements from the line number with the nearest line
equal to or greater than the value of expression 1 to the nearest line equal to or
greater than the value of expression 2. There must be at least two lines between
the two numbers.

LLIST 100,208 Lists the statements between line numbers 100 and 200.

70

Commands
MERGE

1 MERGE

2 MERGE ’filename"’

Abbreviations: MER., MERG.

See also: CLOAD, CLOAD?, CSAVE, PASS verb

The MERGE command is used to load a program saved on cassette tape and merge
it with programs existing in memory. It can only be used with the optional PC-3
Printer/Cassette Interface.

Use

The first form of the MERGE command loads the first program stored on the tape
starting at the current position and merges it with programs already in memory.

The second form of the MERGE command searches the tape for the program whose
name is given by “’filename’’, and merges it with the programs already in memory.

Programs with overlapping line numbers are treated as one program after merging.

If the program in memory is password protected, another password protected
program cannot be merged with it. If the program on cassette is not password
protected, it becomes protected by the password of the program in memory when
merged.

If the program in memory is not password protected, it becomes protected by
the password of the program on the cassette when merged.

MERGE Merges the first program from the tape.
MERGE ‘“PRO3’ Searches the tape for the program named ‘PRO3’ and merges
it.

Note: For example, let's assume the computer memory contains the following
program:
10: PRINT “DEPRECIATION"
20: INPUT “METHOD: “ ; A

71

Commands
MERGE

At this point you remember that you have a similar program portion on tape under
the filename “DEP1”. You will, of course, want to see if this program has sections
useful in the program you are currently constructing. The first step is to find the
tape with “DEP1" on it. Cue the tape to the place at which “DEP1” starts.

Now type: MERGE *'DEP1” and press [ENTER].

The computer will now load “DEP1"” into memory IN ADDITION to the above
program. After “DEP1" is loaded, you might find something in memory similar to
this:

10: PRINT “DEPRECIATION"

20: INPUT “METHOD: ” ; A

10: “DEP1” : REM >2> SECOND MODULE <<
20: PRINT “INTEREST CHARGES”

30: INPUT “AMT. BORROWED: “ ; B

(etc)

Note that unlike the CLOAD command, the new program DID NOT replace the
existing one and that some line numbers have been duplicated. Also note that a
“label” was used on the first line of the merged module. This allows “LINKING”
of the modules together (See LINKING MERGED MODULES — on the next page).
It is important that you review the following information before proceeding with
any further editing or programing:

IMPORTANT NOTES:

Once a MERGE is performed, no INSERTIONS, DELETIONS, or CHANGES are
allowed to previously existing program lines.

Example:

10 “A"” REM THIS ISEXISTING PROGRAM
20 FOR T=1TO 100
30 LPRINT T
40 NEXT T
: (etc)

BEFORE doing a MERGE of the next program, make any necessary changes to this
program.
Then MERGE the next program: MERGE ““PROG2" (example)

72

Commands

MERGE
10 “B” REM THIS IS MERGED PROGRAM
20 INPUT ““ENTER DEPRECIATION: ” ; D
30 INPUT “NUMBER OF YEARS: ” ; Y
40 etc.

Now you may make changes to the above program since it was the last MERGED
portion.

LINKING MERGED MODULES (programs) TOGETHER

Since the processor executes your program lines in logical sequence, it will stop
when it encounters a break in the sequence in line numbering, i.e. if line numbers
10, 20, 30 are followed by duplicate line numbers in a second module, the following
techniques are valid: GOTO "B’ GOSUB “B”, IF. . . THEN "B”
(B is used for example only, you can use any label.)

73

Commands
NEW

1 NEW
2 NEWO
Abbreviations: none

The NEW command is used to clear existing programs.

Use
The NEW command may only be used in the PROgram mode.

The first form of the NEW command clears all programs and data which are
currently in memory. (The programs with a password cannot be cleared.)

The second form of the NEW command clears all programs and data which are
currently in memory. Note that the programs with a password can be cleared.

The NEW command is not defined in the RUN mode and will result in an ERROR
9.

NEW Clears programs or data.

74

Commands
PASS

1 PASS ‘‘character string’’

Abbreviations: PA., PAS.
See also: CSAVE, CLOAD

The PASS command is used to set and cancel passwords.

Use

Passwords are used to protect programs from inspection or modification by other
users. A password consists of a character string which is no more than seven
characters long. The seven characters must be alphabetic or one of the following
special symbols: ! # $ % & () x + —/,.::;<=>?2@+ 7~

Once a PASS command has been given the programs in memory are protected.
A password protected program cannot be examined or modified in memory. It
cannot be output to tape or listed with LIST or LLIST, nor is it possible to add
or delete program lines. |f several programs are in memory and PASS is entered, all
programs in memory are protected. |f a non-password protected program is merged
with a protected program, the merged program is protected. The way to remove
this protection is to execute another PASS command with the same password, or
execute NEW @ in PROgram mode.

PASS “SECRET” Establishes the password ‘SECRET’ for all programs in mem-
ory.

75

Commands
RUN

1 RUN
2 RUN line number

Abbreviations: R., ‘RU.
See also: GOTO

The RUN command is used to execute a program in memory.

Use

The first form of the RUN command executes a program beginning with the lowest
numbered statement in memory.

The second form of the RUN command executes a program beginning with the
specified line number.

RUN differs from GOTO in five respects:

1) The value of the interval for WAIT is reset.

2) The display format established by USING statements is cleared.
3) Variables and arrays other than the fixed variables are cleared.

4) PRINT = PRINT status is set.

5) The pointer for READ is reset to the beginning DATA statement.

Execution of a program with GOTO is identical to execution with the DEF key. In
all three forms of program execution FOR/NEXT and GOSUB nesting is cleared.

RUN 100 Executes the program which begins at line number 100.

76

Verbs
AREAD

1 AREAD variable name

Abbreviations: A., AR., ARE., AREA.

See also: INPUT verb and discussion of the use of the DEF key in
Chapter 6

The AREAD verb is used to read in a single value to a program which is started
using the key.

Use

When a program is labelled with a letter, so that it can be started using the [DEF)
key, the AREAD verb can be used to enter a single starting value without the use
of the INPUT verb. The AREAD verb must appear on the first line of the program
following the label. If it appears elsewhere in the program, it will be ignored.
Either a numeric or string variable may be used, but only one can be used per
program.

To use the AREAD verb, type the desired value in the RUN mode, press the [DEF
key, followed by the letter which identifies the program. If a string variable is
being used, it is not necessary to enclose the entered string in quotes.

10 “X": AREAD N

20 PRINT N™ 2

30 END

Entering ‘7 X" will produce a display of *49".

Notes:

1. When the display indicates PROMPT (“>"} at the start of program execution,
the designated variable is cleared.

2. When the contents of the display have been displayed by a PRINT verb just prior
to the start of program execution, the following is stored:

77

Verbs

AREAD

® When the display indicates PRINT numeric expression, numeric expression or
PRINT “’String’’, “String’’, the contents on the right of the display are stored.

Example: When the program below is executed;

10 “A”": PR INT “ABC"”, "DEFG”

20 “S” : AREAD A$: PRINT AS$

RUN mode

&] - ABC DEFG

sl -~ DEFG

® When the display indicates PRINT Numeric expression; Numeric expression;
Numeric expression..., the contents displayed first (on the extreme left) are
stored.

® When the display indicates PRINT ““String’’; **String’’; *String’’..., the "‘String”
designated last are stored.

78

Verbs
CHAIN

1 CHAIN

2 CHAIN expression

3 CHAIN “filename’’

4 CHAIN ‘‘filename’’, expression

Abbreviations: CH., CHA., CHAI.
See also: CLOAD, CSAVE, and RUN

The CHAIN verb is used to start execution of a program which has been stored on
cassette tape. It can only be used with the optional PC-3 Printer/Cassette Interface.

Use

To use the CHAIN verb one or more programs must be stored on a cassette. Then,
when the CHAIN verb is encountered in a running program, a program is loaded
from the cassette and executed.

The first form of CHAIN loads the first program stored on the tape and begins
execution with the lowest line number in the program. The effect is the same as
having entered CLOAD and RUN when in the RUN mode.

The second form of CHAIN loads the first program stored on the tape and begins
execution with the line number specified by the expression.

The third form of CHAIN searches the tape for the program whose name is
indicated by "‘filename’’, loads the program, and begins execution with the lowest
line number.

The fourth form of CHAIN will search the tape for the program whose name is
indicated by filename, load the program, and begin execution with the line number
indicated by the expression.

190 CHAIN Loads the first program from the tape and begins
execution with the lowest line number.

20 CHAIN “PRO-2*, 480 Searches the tape for a program named PRO-2, loads it,
and begins execution with line number 480.

79

Verbs
CHAIN

For example, let's assume you have three program sections named PRO—1, PRO-2,
PRO-3. Each of these sections ends with a CHAIN statement.

“PRO-1"
Tape
10:
20: (" V" indicates the position of the tape
recorder head.)
Execution
Y
400: CHAIN File name File name
"PRO-2" “PRO-3"
400: CHAIN "“PRO-2"”, 410 —
"PRO-2"
410:
Execution
Y
700: CHAIN File name File name
“PRO-2" “PRO-3"
700: CHAIN “PRO-3”, 710
“PRO-3"
710:
Y
Execution File name File name
"“"PRO-2" “PRO-3"
990: END

During execution, when the computer encounters the CHAIN statement, the
next section is called into memory and executed. In this manner, all of the sections
are eventually run.

80

Verbs
CLEAR

1 CLEAR

Abbreviations: CL., CLE., CLEA.
See also: DIM

The CLEAR verb is used to erase all variables which have been used in the program
and to reset all preallocated variables to zero or NUL.

Use

The CLEAR verb recovers space which is being used to store variables. This might
be done when the variables used in the first part of a program are not required in
the second part and available space is limited. CLEAR may also be used at the
beginning of a program when several programs are resident in memory and you
want to clear out the space used by execution of prior programs.

CLEAR does not free up the space used by the variables A — Z, A$ — Z$, or
A(1) — A(26) since they are permanently assigned (see Chapter 4). However the
contents of these preallocated variables are reset numeric variables to zero and
string variables to NUL.

10 A=5 : DIMC(5)
20 CLEAR Frees up the space assigned to C() and resets A to zero.

81

Verbs
DEGREE

1 DEGREE

Abbreviations: DE., DEG., DEGR., DEGRE.
See also: GRAD and RADIAN

The DEGREE verb is used to change the form of angular values to decimal degrees.

Use

The PC-8 has three forms for representing angular values — decimal degrees, radians
and gradient. These forms are used in specifying the arguments to the SIN, COS,
and TAN functions and in returning the results from the ASN, ACS, and ATN
functions.

The DEGREE function changes the form for all anguiar values to decimal degree
form until a GRAD or RADIAN verb is used. The DMS and DEG functions can
be used to convert decimal degrees to degree, minute, second form and vice versa.

10 DEGREE
20 X = ASN 1 X now has a value of 90, i.e. 90 degrees, the Arcsine of 1.

82

Verbs
DATA

1 DATA expression list

Where: expression list is: expression
or: expression , expression list

Abbreviations: DA., DAT,
See also: READ, RESTORE

The DATA verb is used to provide values for use by the READ verb.
Use

When assigning initial values to an array, it is convenient to list the values in a
DATA statement and use a READ statement in a FOR ... NEXT loop to load the
values into the array. When the first READ is executed, the first value in the first
DATA statement is returned. Succeeding READs use succeeding values in the
sequential order in which they appear in the program, regardless of how many
values are listed in each DATA statement or how many DATA statements are
used.

DATA statements have no effect if encountered in the course of regular execution
of the program, so they can be inserted wherever it seems appropriate. Many
programmers like to include them immediately following the READ which uses
them. If desired, the values in a DATA statement can be read a second time by
using the RESTORE statement.

10 DIM B(10) Sets up an array.

26 FOR 1=1T7010

30 READ B({l) Loads the values from the DATA statement into B()
40 NEXT 1 B(1) will be 1, B(2) will be 2, B(3) will be 3, etc.

50 DATA 1,2,3,4,5,6
60 DATA 7,8,9,10

83

Verbs

DIM

1 DIM dim list
Where: dim list is: dimension spec.

or: dimension spec. , dim list
and: dimension spec. is: numeric dim spec.

or: string dim spec.
and: numeric dim spec is: numeric name (size)
and: string dim spec is: string name (dims)

or: string name (dims) * len
and: numeric name is: valid numeric variable name
and: string name is: valid string variable name
and: dims is: size

or: size, size
and: size is: number of elements
and: len is: length of each string in a string array
Abbreviations: D., DI.

The DIM verb is used to reserve space for numeric and string array variables.

Use

Except for A(1) ~ A(26) and A${1) ~ A$(26), which are predefined (see Chapter
4), a DIM verb must be used to reserve space for any array variable. An array
variable and a simple variable may have the same name. A string array and a
numeric array may have the same name except for the dollar sign.

The maximum number of dimensions in any array is two; the maximum size of
any one dimension is 255. In addition to the number of elements specified in the
dimension statement, one additional ‘‘zeroeth’’ element is reserved. For example,
DIM B(3) reserves B(@), B(1), B(2), and B(3). In two dimensional arrays there is an
extra “zeroeth’” row and column.

In string arrays one specifies the size of each string element in addition to the
number of elements. For example, DIM B$(3)% 12 reserves space for 4 strings
which are each a maximum of 12 characters long. If the length is not specified
each string can contain a maximum of 16 characters.

84

Verbs
DIM

When a numeric array is dimensioned, all values are initially set to zero; in a string
array the values are set to NUL.

Al) and A${) may be dimensioned to sizes larger than 26 with the DIM state-
ment. In this case, part of the array is in the preallocated memory and part is in
program memory. See Chapter 4.

10 DIM B(10) Reserves space for a numeric array with 11 elements.

20 DIM C$(4, 4)x10 Reserves space for a two dimensional string array with
rows and 5 columns; each string will be a maximum of
10 characters.

NOTE:

The PC-8 makes it possible to use an expression as the suffix of two-dimensional
string array variables.

For the second suffix, however, do not use an array variable. However, arrays, such
as A(30) can be used with this.

Example 1: B (w, QV@) =10........ Not usable
L2nd suffix
1st suffix
Example2: B(C(9),5)=10....... Usable
Example 3: B (4, A(30))=10......... Usable

In Example 1, therefore, C (@) can be used when replaced by A(30), or if required,
A(30) = C (@) is placed before it.

85

Verbs Verbs
END

1 END

Abbreviations: E., EN.

The END verb is used to signal the end of a program.

Use

When multiple programs are loaded into memory at the same time a mark must
be included to indicate where each program ends so that execution does not
continue from one program to another. This is done by including an END verb
as the last statement in the program.

10 PRINT “HELLO” With these programs in memory a ‘RUN 10’ prints
20 END '"HELLO’, but not ‘GOODBYE’. ‘RUN 3@ prints
30 PRINT “GOODBYE" ‘GOODBYE'.

40 END

86

Verbs
FOR

1 FOR numeric variable = expression 1 TO expression 2
2 FOR numeric variable = expression 1 TO expression 2
STEP expression 3

Abbreviations: F.and FO.; STE.
See also: NEXT

The FOR verb is used in combination with the NEXT verb to repeat a series of
operations a specified number of times.

Use

The FOR and the NEXT verbs are used in pairs to enclose a group of statements
which are to be repeated. The first time this group of statements is executed
the loop variable (the variable named immediately following the FOR) has the
value of expression 1.

When execution reaches the NEXT verb this value is tested against expression 2.
If the value of the loop variable is less than expression 2, the loop variable is in-
creased by the step size and the enclosed group of statements is executed again,
starting with the statement following the FOR. In the first form the step size is
1; in the second form the step size is given by expression 3. If the value of the loop
variable is greater than or equal to expression 2, execution continues with the
statement which immediately follows the NEXT. Because the comparison is made

at the end, the statements within a FOR/NEXT pair are always executed at least
once.

Expression 1 may have any value in the numeric range. When expression 1 and
expression 2 are compared, only the integer part is used in the expression 2. Ex-
pression 2 and expression 3 must be an integer in the range of —32768 to 32767;
Expression 3 may not be zero.

Expression 1, expression 2 and expression 3 can also be specified in negative.

The loop variable may be used within the group of statements, for example as an
index to an array, but care should be taken in changing the value of the loop
variable.

Programs should be written so that they never jump from outside a FOR/NEXT
pair to a statement within a FOR/NEXT pair. Similarly, programs must never
leave a FOR/NEXT pair by jumping out. Always exit a FOR/NEXT loop via the

NEXT statement. To do this, set the loop variable to a value higher than expression 2.

87

Verbs

FOR

The group of statements enclosed by a FOR/NEXT pair can include another pair
of FOR/NEXT statements which use a different loop variable as long as the
enciosed pair is completely enclosed; i.e., if a FOR statement is included in the
group, the matching NEXT must also be included. FOR/NEXT pairs may be
"nested’”’ up to five levels deep.

19 FOR 1=1TO5 — This group of statements prints the numbers
20 PRINT I 1,2,3,4,5.

30 NEXT | —

40 FORN=10 TO @ STEP -1 This group of statements counts down 1@, 9,
50 PRINT N 8,7,6,6,4,3,2,1,0.

60 NEXT N —

70 FORN=1TO 10 B

80 X =1

99 FORF=1TON This group of statements computes and
100 X=Xx%xF prints N factorial for the numbers from 1 to
110 NEXTF 10.

120 PRINT X

130 NEXTN —

88

Verbs
GOSuUB

1 GOSUB expression

Abbreviations: GOS., GOSU.
See also: GOTO, ON ... GOSUB,ON ... GOTO, RETURN

The GOSUB verb is used to execute a BASIC subroutine.

Use

When you wish to execute the same group of statements several times in the course
of a program or use a previously written set of statements in several programs,
it is convenient to use the BASIC capability for subroutines using the GOSUB
and RETURN verbs.

The group of statements is included in the program at some location where they
are not reached in the normal sequence of execution. A frequent location is
following the END statement which marks the end of the main program. At
those locations in the main body of the program — where subroutines are to be
executed, include a GOSUB statement with an expression which indicates the
starting line number of the subroutine. The last line of the subroutine must be
a RETURN. When GOSUB is executed, the PC-8 transfers control to the indicated
line number and processes the statements until a RETURN is reached. Contro!
is then transferred back to the statement following the GOSUB.

A subroutine may include a GOSUB. Subroutines may be ‘‘nested’” in this fashion
up to 1@ levels deep.

The expression in a GOSUB statement may not include a comma, e.g., ‘A(1, 2)’
cannot be used. Since there is an ON ... GOSUB structure for choosing different
subroutines at given locations in the program, the expression usually consists of
just the desired line number. When a numeric expression is used it must evaluate
to a valid line number, i.e., 1 to 999, or an ERROR 4 will occur.

19 GOSUB 100 When this program is run it prints the word
20 END ‘HELLO' one time.

100 PRINT “"HELLO"”

11¢ RETURN

89

Verbs
GOTO

1 GOTO expression

Abbreviations: G., GO., GOT.
See also: GOSUB, ON...GOSUB, ON...GOTO

The GOTO verb is used to transfer control to a specified line number.

Use

The GOTO verb transfers control from one location in a BASIC program to another
location. Unlike the GOSUB verb, GOTO does not ““remember’’ the location from
which the transfer occurred.

The expression in a GOTO statement may not include a comma, e.g., ‘A(1, 2)’
cannot be used. Since there is an ON . .. GOTO structure for choosing different
destinations at given locations in the program, the expression usually consists of
just the desired line number. When a numeric expression is used, it must evaluate
to a valid line number, i.e., 1 to 999, or an ERROR 4 will occur.

Well designed programs usually flow simply from beginning to end, except for sub-
routines executed during the program. Therefore, the principal use of the GOTO
verb is as a part of an IF ., .. THEN statement.

10 INPUT A$ This program prints ‘YES' if a ‘Y’ is
20 IF A$="Y" THEN GOTO 50 entered and prints ‘NO’ if anything else is
3@ PRINT “NO” entered.

40 GOTO 60

5@ PRINT “YES"”

60 END

90

Verbs
GRAD

1 GRAD

Abbreviations: GR., GRA.
See also: DEGREE and RADIAN

The GRAD verb is used to change the form of angular values to gradient form.

Use

The PC-8 has three forms for representing angular values — decimal degrees, radians,
and gradient. These forms are used in specifying the arguments to the SIN, COS,

and TAN functions and in returning the results from the ASN, ACS, and ATN
functions.

The GRAD function changes the form for all angular values to gradient form until
a DEGREE or RADIAN verb is used. Gradient form represents angular measure-
ment in terms of percent gradient, i.e., a 45° angle is a 50° gradient.

10 GRAD

20 X = ASN 1 X now has a value of 180, i.e., a 1009 gradient, the Arcsine
of 1.

91

Verbs
IF...THEN

1 IF condition THEN statement
2 IF condition statement

Abbreviations: none for IF, T., TH., THE.

The IF . .. THEN verb pair is used to execute or not execute a statement depending
on conditions at the time the program is run.

Use
In the normal running of a BASIC programs, statements are executed in the
sequence in which they occur. The IF . .. THEN verb pair allows decisions to be

made during execution so that a given statement is executed only when desired.
When the condition part of the |F statement is true, the statement is executed;
when it is False, the statement is skipped.

The condition part of the |F statement can be any relational expression as
described in Chapter 4. It is also possible to use a numeric expression as a condi-
tion, although the intent of the statement will be less clear. Any expression which
evaluates to zero or a negative number is considered False; any which evaluates
to a positive number is considered True.

The statement which follows the THEN may be any BASIC statement, including
another IF . . . THEN. If itis a LET statement, the LET verb itself must appear.
Unless the statement is an END, GOTO, or ON . .. GOTO, the statement following
the IF . .. THEN statement is the next one executed regardless of whether the con-
dition is True.

The two forms of the IF statement are identical in action, but the first form is
clearer.

10 INPUT “CONTINUE? '"; A$ This program continues to ask ‘CON-
20 IF A$="YES"” THEN GOTO 10 TINUE?" as long as ‘YES' is entered; it
30 IF A$="NO” THEN GOTO 690 stops if ‘NO’ is entered, and complains
40 PRINT "“YES OR NO, PLEASE” otherwise.

5@ GOTO 10

60 END

92

Verbs
iINPUT

1 INPUT input list

Where: input list is: input group
or: input group, input list
and: input group is: wvar list

or: prompt, var list
or: prompt ; var list

and: var list is: variable
or: variable , var list
and: prompt is: any string constant
Abbrevaitions: ., IN., INP., INPU.

See also: INPUT #, READ

The INPUT verb is used to enter one or more values from the keyboard.

Use

When you want to enter different values each time a program is run, use the INPUT
verb to enter these values from the keyboard.

In its simplest form the INPUT statement does not include a prompt string, instead
a question mark is displayed on the left edge of the display. A value is then en-
tered, followed by the (ENTER]key. This value is assigned to the first variable in
the list. 1f other variables are included in the same INPUT statement, this process
is repeated until the list is exhausted.

If a prompt is included in the INPUT statement, the process is exactly the same
except that, instead of the question mark, the prompt string is displayed at the left
edge of the display. If the prompt string is followed by a semicolon, the cursor is
positioned immediately following the prompt. |f the prompt is followed by a
comma, the prompt is displayed, then when a key is pressed the display is cleared
and the first character of the input is displayed at the left edge.

When a prompt is specified and there is more than one variable in the list following
it, the second and succeeding variables are prompted with the question mark. If a
second prompt is included in the list, it is displayed for the variable which
immediately follows it.

93

Verbs
INPUT

If the key is pressed and no input is provided, the variable retains the
value it had before the INPUT statement.

10 INPUT A Clears the display and puts a question
mark at the left edge.

20 INPUT “A="" A Displays ‘A=' and waits for input data.

30 INPUT “A=", A Displays ‘A=".

When data is input ‘A=' disappears and
the data is displayed starting at left edge.

40 INPUT “X =2 "X, "Y=2"Y Displays ‘X=?" and waits for first input.
After is pressed, display is cleared
and 'Y=?' is displayed at left edge.

94

Verbs
INPUT #

1 INPUT #

2 INPUT # "filename”’

3 INPUT # var list

4 INPUT # “filename’ ; var list

Where: var list is: variable
or: variable , var list

Abbreviations: 1. #, IN. #, INP.#, INPU. #
See also: INPUT, PRINT #, READ

The INPUT # verb is used to enter values from the cassette tape.

Use

PRINT # saves the values of variables on tape. They can then be read back into
the same or another program using the INPUT # verb.

With the first form, the values are sequentially read from the tape and assigned
to the 26 preallocated storage locations (fixed variables) and A() variables,
(A(27) ~). The transfer continues until the values recorded on tape run out or
the computer memory is filled to its capacity.

With the second form, the tape is searched for the indicated filename and the
variables are loaded as in the first form.

With the third form, if the variable list includes a fixed variable, values are sequen-
tially read from the tape and assigned to the preallocated storage locations, starting
at the specified variable.

With the fourth form, the tape is searched for the indicated filename and the
variables are loaded as in the third form.

There is a special variable form which may be used in the variable list. It looks
like an array variable except that an asterisk is enclosed in the parentheses, e.g.,
B(x) or F$(k). This form causes all values of the indicated variable to be restored
from the tape; i.e., B { X) restores B (@), B (1), B (2),... etc., for as many values
as were originally stored. You may not read a single element of an array.

95

Verbs
INPUT #

1) 20 INPUT# A

2) 20 INPUT # A(3)

3) 20 INPUT # “FIL2"; A$

4) 20 INPUT # “FIL3"; G(x%)

NOTES:

Reads values from the current position
of the tape.

Reads values from the current position
of the tape and assigns the values to the
variables A(3) ~ A(26) (or C ~ Z) and
A(27) ~.

Searches the tape for the file ‘FIL2’ and
reads in values.

Searches the tape for the file ‘FIL3’ and
reads in as many values of G() as are
available,

1. When the prerecorded data on tape is transferred to a variable, the data and
variable should be coincident in shape (numerical or string variable), size and
length. An error (ERROR 8} will result unless they are coincident in size and
length. No error will occur when they are not coincident only in shape. In this
case, however, the transfer of incorrect data may result when the numerical
data is transferred to a string variable or the string data to a numerical variable.
Therefore, the data and variable should also be coincident in shape.

2. The data transfer to variables in the fixed variables and/or in the shape of
Al) terminates when the prerecorded data on tape is out or when the com-

puter memory is filled to capacity.

96

Verbs
LET

1 LET variable = expression
2 variable = expression

Abbreviations: LE.

The LET verb is used to assign a value to a variable.

Use

The LET verb assigns the value of the expression to the designated variable. The
type of the expression must match that of the variable, i.e. only numeric expres-
sions can be assigned to numeric variables and only string expressions can be assign-
ed to string variables. In order to convert from one type to the other, one of the
explicit type conversion functions, STR$ or VAL, must be used.

The LET verb may be omitted in all LET statements except those which appear
in the THEN clause of an IF ... THEN statement. In this one case the LET
verb must be used.

10 1=10 Assignes the value 10 to 1.
20 A = 5%l Assigns the value 5@ to A.
30 X$=STRS$ (A) Assigns the value ‘6@’ to X$.

40 IF1>=10 THEN LET Y$=X$+". 80" Assigns the value ‘'50.00" to Y$.

97

Verbs
LPRINT

1 LPRINT print expr
2 LPRINT print expr , print expr
3 LPRINT print list

Where: print list is: print expr
or: print expr; print list
and: printexpr is: expression

or: USING clause ; expression

The USING clause is described separately under USING

Abbreviations: LP.,, LPR., LPRI., LPRIN.
See also: PAUSE, PRINT, USING, and WAIT

The LPRINT verb is used to print information on the printer of the PC-3 Printer/
Cassette Interface.

Use

The LPRINT verb is used to print prompting information, results of calculations,
etc. The first form of the LPRINT statement prints a single value. If the expres-
sion is numeric, the value will be printed at the far right edge of the paper. If it
is a string expression, the print is made starting at the far left.

With the second form of the LPRINT statement the paper is divided into two 12

character halves and the two values are printed in each half according to the same
rules as above.

With the third form the print always starts at the left edge and each value is printed
immediately following the previous value from left to right with no intervening
space.

It is possible to cause PRINT statements to work as LPRINT statements. See the
PRINT verb for details.

If an LPRINT statement contains more than 24 characters, the first 24 are printed
on one line, the next 24 on the next line, and so forth.

Unlike PRINT, there is no halt or wait after execution of an LPRINT statement.

98

Verbs
LPRINT

10 A=10: B=20: X$ = "ABCDEF"
20 LPRINT A

Paper

30 LPRINT X$ HBCIEF
40 LPRINT A, B 14.
50 LPRINT A;B; X$ 19.20.4BCDEF

99

Verbs
NEXT

1 NEXT numeric variable

Abbreviations: N., NE,, NEX,
See also: FOR

The NEXT verb is used to mark the end of a group of statements which are being
repeated in a FOR/NEXT loop.

Use

The use of the NEXT verb is described under FOR. The numeric variable in a
NEXT statement must match the numeric variable in the corresponding FOR.

19 FOR I=1TO 10
20 PRINT |
30 NEXT |

Print the numbers from 1 to 10.

100

Verbs
ON...GOSuUB

1 ON expression GOSUB expression list

Where: expression list is: expression
or: expression , expression list

Abbreviations: 0.; GOS., GOSU.
See also: GOSUB, GOTO, ON...GOTO

The ON ... GOSUB verb is used to execute one of a set of subroutines depending
on the value of a control expression.

Use

When the ON ... GOSUB verb is executed the expression between ON and GOSUB
is evaluated and reduced to an integer. If the value of the integer is 1, the first
subroutine in the list is executed as in a normal GOSUB. If the expression is 2,
the second subroutine in the list is executed, and so forth. After the RETURN
from the subroutine execution proceeds with the statement which follows the
ON ... GOSUB.

If the expression is zero, negative, or larger than the number of subroutines
provided in the list, no subroutine is executed and execution proceeds with the
next line of the program.

NOTE: Commas may not be used in the expressions following the GOSUB. The
PC-8 cannot distinguish between commas in expressions and commas between
expressions,

10 INPUT A An input of 1 prints “FIRST"; 2 prints
20 ON A GOSUB 100, 200, 300 “SECOND”; 3 prints “THIRD”. Any

30 END : other input does not produce any
100 PRINT “FIRST” print.

110 RETURN

200 PRINT ““SECOND"”
210 RETURN

300 PRINT “THIRD"”
319 RETURN

101

Verbs
ON...GOTO

1 ON expression GOTO expression list

Where: expression list is: expression

or: expression , expression list

Abbreviations: O.; G., GO., GOT.
See also: GOSUB, GOTO, ON ... GOSUB

The ON ... GOTO verb is used to transfer control to one of a set of locations
depending on the value of a control expression.

Use

When the ON ... GOTO verb is executed the expression between ON and GOTO
is evaluated and reduced to an integer. If the value of the integer is 1, control
is transferred to the first location in the list. If the expression is 2, control is
transferred to the second location in the list; and so forth.

If the expression is zero, negative, or larger than the number of locations provided
in the list, execution proceeds with the next line of the program.

NOTE: Commas may not be used in the expressions following the GOTO. The
PC-8 cannot distinguish between commas in expressions and commas between
expressions.

10 INPUT A An input of 1 prints ‘FIRST'; 2 prints
20 ON A GOTO 100, 200, 300 ‘SECOND’; 3 prints ‘THIRD’. Any
30 GOTO 900 other input does not produce any
100 PRINT “FIRST” print.

110 GOTO 900

200 PRINT “'SECOND”
210 GOTO 900

300 PRINT "“THIRD"
310 GOTO 900

900 END

102

Verbs
PAUSE

1 PAUSE printexpr
2 PAUSE print expr, print expr
3 PAUSE print list

Where: print list is: print expr
or: print expr; print list
and: print expr is: expression
or: USING clause ; expression

The USING clause is described separately under USING

Abbreviations: PAU., PAUS.
See also: LPRINT, PRINT, USING, and WAIT

The PAUSE verb is used to print information on the display for a short period.

Use

The PAUSE verb is used to display prompting information, results of calculations,
etc. The operation of PAUSE is identical to PRINT except that after PAUSE the
PC-8 waits for a short preset interval of about .85 seconds and then continues
execution of the program without waiting for the ENTER key or the WAIT
interval,

The first form of the PAUSE statement displays a single value. |f the expression is
numeric, the value is printed at the far right end of the display. !f it is a string
expression, the display is made starting at the far left.

With the second form of the PAUSE statement the display is divided into two

8 character halves. The two values are displayed in each half according to the
same rules as above.

With the third form the display starts at the left edge and each value is displayed
immediately following the previous value from left to right with no intervening
space.

PAUSE statements are not affected by the PRINT = LPRINT statement (see
PRINT).

While it is possible to write PAUSE statements which would display more than
16 characters only the left-most 16 appear in the display. There is no way to see
the other characters.

103

Verbs
PAUSE

10 A=10:B=20: X$="ABCDEF"

20 PAUSE A
30 PAUSE X$
40 PAUSE A, B

50 PAUSE A; B; X$

Display

10.

ABCDEF

19. 20.

104

10.20. ABCDEF

Verbs
PRINT

PRINT print expr

PRINT print expr, printexpr
PRINT print list

PRINT = LPRINT

PRINT = PRINT

O WN =

Where: print list is: print expr
or: print expr ; print list
and: printexpr is: expression
or: USING clause ; expression

The USING clause is described separately under USING

Abbreviations: P,, PR., PRI,, PRIN,

’ ’

See also: LPRINT, PAUSE, USING, and WAIT

The PRINT verb is used to print information on the display or on the printer of the
PC-3 Printer/Cassette Interface (26-3591).

Use

The PRINT verb is used to display prompting information, results of calculations,
etc. The first form of the PRINT statement displays a single value. If the
expression is numeric, the value is printed at the far right end of the display. [f
it is a string expression, the display is made starting at the far left.

With the second form of the PRINT statement the display is divided into two
8 character halves and the two values are displayed in each half according to the
same rules as above.

With the third form, the display starts at the left edge and each value is displayed
immediately following the previous value from left to right with no intervening
space.

The fourth and fifth forms of the PRINT statement do no printing. The fourth
form causes all PRINT statements which follow it in the program to be treated
as if they were LPRINT statements. The fifth form resets this condition so that
the PRINT statements will again work with the display.

While it is possible to write PRINT statements which would display more than

105

Verbs
PRINT

16 characters, only the left-most 16 appear in the display. There is no way to see
the other characters.

10 A=10:B=20:X$="ABCDEF" Display

20 PRINT A 10.
30 PRINT X$ ABCDEF

40 PRINT A, B L 10. 29.
50 PRINT A; B; X$ 10.20. ABCDEF

106

Verbs
PRINT #

1 PRINT #

2 PRINT # “filename”’

3 PRINT # “var list”

4 PRINT # “filename’” ; var list

Where: var list is: variable
or: variable, var list

Abbreviations: P. #, PR. #, PRI. #,PRIN. #
See also: INPUT #, PRINT, READ

The PRINT # verb is used to store values on the cassette tape.

Use

Using PRINT # the values of variables can be saved on tape. These can then be read
back into the same or another program using the INPUT # verb.

With the first form, the values of the 26 preallocated variables (variables A ~ Z
and A$ ~ Z$), A{)and A$() variables are stored on the tape.
Note: Variables A~ Z and A(1)} ~ A(26) are the same.

With the second form, the values are stored on the tape as in the first form under
the designated filename.

With the third form, if the variable list includes a fixed variable, the values of the
fixed variables starting from the specified variable are saved on tape.

With the fourth form, the values are stored on the tape as in the third form under
the designated filename.

There is a special variable form which may be used in the variable list. It looks like
an array variable except that an asterisk is enclosed in the parentheses, e.g., B(x)
or F$1%). This form causes all values of the indicated variable to be saved on the
tape, i.e., B { %) saves B (), B (1), B (2), ... etc., for as many values as are in the
array. You may not save a single element of an array.

107

Verbs

PRINT #

1) 10 PRINT # A Saves values on the tape at the current
position,

2) 10 PRINT # "“FIL2"; AS Saves values on the tape under the file-
name ‘FIL2’.

3) 10 PRINT # “FIL3"; G (x) Saves values of G (} on the tape under
the filename ‘FIL3’.

Note:

A variable above A(27) or a dimensional variable must be secured into the
program/data area before the PRINT # command is executed. |If the variable is not
designated before the PRINT # command, an error (ERROR 3) will result.

108

Verbs
RADIAN

1 RADIAN

Abbreviations: RAD., RADI., RADIA.
See also: DEGREE and GRAD

The RADIAN verb is used to change the form of angular values to radian form.

Use

The PC-8 has three forms for representing angular values — decimal degrees, radians,
and gradient. These forms are used in specifying the arguments to the SIN, COS,

and TAN functions and in returning the results from the ASN, ACS, and ATN
functions.

The RADIAN function changes the form for all angular values to radian form until
a DEGREE or GRAD verb is used. Radian form represents angles in terms of the

length of the arc with respect to a radius, i.e.,, 360° is 2 Pl radians since the circum-
ference of a circle is 2 Pl times the radius.

10 RADIAN
20 X = ASN1 X now has a value of 1.5670796327 or PI/2, the Arcsine of 1

109

Verbs
RANDOM

1 RANDOM

Abbreviations: RA., RAN., RAND., RANDO.

The RANDOM verb is used to reset the seed for random number generation.

Use

When random numbers are generated using the RND, function, the PC-8 begins
with a predetermined “‘seed” or starting number. The RANDOM verb resets this
seed to a new randomly determined value.

The starting seed will be the same each time the PC-8 is turned on, so the sequence
of random numbers generated with RND is the same each time, unless the seed
is changed. This is very convenient during the development of a program because
it means that the behavior of the program should be the same each time it is run
even though it includes a RND function. When you want the numbers to be
truly random, the RANDOM statement can be used to make the seed itself random.

13 RANDOM When run from line 2@, the value of X is based on the
20 X=RND 10 standard seed. When run from line 10, a new seed is
used.

110

Verbs
READ

1 READ variable list

Where: variable list is: variable
or: variable , variable list

Abbreviations: REA.
See also: DATA, RESTORE

The READ verb is used to read values from a DATA statement and assign them to
variables.

Use

When assigning initial values to an array, it is convenient to list the values in a
DATA statement and use a READ statement in a FOR . . . NEXT loop to load the
values into the array. When the first READ is executed, the first value in the first
DATA statement is returned. Succeeding READs use succeeding values in the
sequential order in which they appear in the program, regardless of how many
values are listed in each DATA statement or how many DATA statements are used.

If desired, the values in a DATA statement can be read a second time by using the
RESTORE statement.

10 DIM B(10) Sets up an array

20 FOR 1=1 TO 10

30 READ B(l) Loads the values from the DATA statement into
40 NEXT | B()—B({1)is1,B(2)is 2, B{3)is 3, etc.

50 DATA 1,2,3,4,5,6
60 DATA 7,8,9,10

11

Verbs
REM

1 REM remark

Abbreviations: none

The REM verb is used to include comments in a program.

Use

Often it is useful to include explanatory comments in a program. These can
provide titles, names of authors, dates of last modification, usage notes, reminders

about algorithms used, etc. These comments are included by means of the REM
statement,

The REM statement has no effect on the program execution and can be included
anywhere in the program. Everything following the REM verb in that line is treated
as a comment, so the REM verb must be the last statement in a line when multiple
statement lines are used.

10 REM THIS LINE HAS NO EFFECT

112

Verbs
RESTORE

1 RESTORE
2 RESTORE expression

Abbreviations: RES., REST., RESTO., RESTOR.
See also: DATA, READ

The RESTORE verb is used to re-read values in a DATA statement or to change the
order in which these values are read.

In the regular use of the READ verb the PC-8 begins reading with the first value
in a DATA statement and proceeds sequentially through the remaining values.
The first form of the RESTORE statement resets the pointer to the first value of
the first DATA statement, so that it can be read again. The second form of the
RESTORE statement resets the pointer to the first value of the first DATA
statement whose line number is greater than the value of the expression.

1@ DIM B(10) Sets up an array

20 FOR 1=1 TO 10

3@ READ B{l) Assigns the value 10 to each of the elements of B().
40 RESTORE

50 NEXT |

60 DATA 10

Note: The RESTORE verb must be written at the beginning of the line (just
after the line number). It cannot be used with a colon (:) following another state-
ment.

113

Verbs
RETURN

1 RETURN

Abbreviations: RE., RET., RETU., RETUR.
See also: GOSUB, ON...GOSUB

The RETURN verb is used at the end of a subroutine to return control to the state-
ment following the originating GOSUB.

Use

A subroutine may have more than one RETURN statement, but the first one
executed terminates the execution of the subroutine. The next statement executed
will be the one following the GOSUB or ON . . . GOSUB which calls the subroutine.
tf a RETURN is executed without a GOSUB, an Error 5 will occur.

10 GOSuUB 100 When run this program prints the word “HELLO’’ once.
20 END

100 PRINT “HELLO”
110 RETURN

114

Verbs
STOP

1 STOP

Abbreviations: S., ST., STO.,

See also: END; CONT command

The STOP verb is used to halt execution of a program for diagnostic purposes.

Use

When the STOP verb is encountered in program execution the PC-8 execution
halts and a message is displayed such as ‘BREAK IN 200’ where 200 is the number
of the line containing the STOP. STOP is used during the development of a
program to check the flow of the program or examine the state of variables. Execu-
tion may be restarted using the CONT command.

10 STOP Causes “BREAK IN 10’ to appear in the display.

115

Verbs
TROFF

1 TROFF

Abbreviations : TROF.
See also: TRON

The TROFF verb is used to cancel the trace mode.

Use

Execution of the TROFF verb restores normal execution of the program,

1@ TRON When run, this program displays the line num-
20 FORI1=1TO3 bers 18, 20, 30, 30, 30 and 40 as the (3] is
30 NEXT I pressed. By pressing the [t , you can review
40 TROFF the line.

116

Verbs
TRON

1 TRON

Abbreviations : TR., TRO.
See also: TROFF

The TRON verb is used to initiate the trace mode.

Lse

The trace mode provides assistance in debugging programs. When the trace mode is
on, the line number of each statement is displayed after each statement is executed.
The PC-8 then haits and waits for the Down Arrow key to be pressed before moving
on to the next statement. The Up Arrow key may be pressed to see the statement
which has just been executed. The trace mode continues until a TROFF verb
is executed.

19 TRON When run this program displays the line numbers
20 FOR 1=1TO 3 10, 20, 30, 30, 30 and 40 as the (3] is pressed.
30 NEXT I By pressing the [t you can review the line.

49 TROFF

117

Verbs
'USING

1 USING

2 USING “editing specification’’

3 USING character variable
Abbreviations: U., US., USI., USIN.

See also: LPRINT, PAUSE, PRINT
Further guide to the use of USING is provided in Appendix C

The USING verb is used to control the format of displayed or printed output.

Use

The USING verb can be used by itself or as a clause within a LPRINT,
PAUSE, or PRINT statement. The USING verb establishes a specified format
for output which is used for all output which follows until changed by
another USING verb.

The editing specification of the USING verb consists of a quoted string
composed of some combination of the following editing characters:

Right justified numeric field character
Decimal point.
~ Used to indicate that numbers should be displayed in scientific notation.

& Left justified alphanumeric field.

For exampte, ""####" is an editing specification for a right justified numeric field
with room for 3 digits and the sign. In numeric fields, a location must be included
for the sign, even if it will always be positive.

Editing specifications may include more than one field. For example
“HERHHRJQ&R could be used to print a numeric and a character field next to each’
other.

If the editing specification is missing, as in format 1, special formatting is turned
off and the built-in display rules pertain.

118

Verbs

USING
|
Display
10 A=125 : X$="ABCDEE" —
20 PRINT USING “##.## ~": A [1. 25E 92 |
30 PRINT USING “888&8&3&"X$ | ABCDEF \
40 PRINT USING "####8&8&;A;X$ | 125ABC |

Notes: 1. When the total number of digits specified with USING exceeds 16 for
“PRINT expression’’, ERROR 7 results.
2. When the number of digits for the integer part (sign and decimal point
included) exceeds 8 while using the fixed decimal point system for
“PRINT expression, expression”’, ERROR 7 results.
When the character string of the expression in the form of “PRINT

expression , expression’’ exceeds 8 columns, the excess part is not dis-
played.

3. When the display contents of the form “PRINT expression; expression”
exceeds 16 columns, the excess part is not displayed.

19

Verbs
WAIT

1 WAIT
2 WAIT expression

Abbreviations: W., WA., WAI.
See also: PAUSE, PRINT

The WAIT verb is used to control the length of time that displayed information
is shown before program execution continues.

Use

In normal execution the PC-8 halts execution after a PRINT command until the
key is pressed. The WAIT command causes the PC-8 to display for a
specified interval and then proceed automatically (similar to the PAUSE verb).
The expression which follows the WAIT verb determines the length of the interval.
The interval may be set to any value from @ to 65535. Each increment is about one
sixty-fourth of a second. WAIT 0 is too fast to be read reasonably; WAIT 65535
is about 17 minutes. WAIT with no following expression resets the PC-8 to the
original condition of waiting until the key is pressed.

10 WAIT 64 Causes PRINT to wait about 1 second.

120

Functions
Pseudovariables

FUNCTIONS

Pseudovariables

Pseudovariables are a group of functions which take no argument and are used like
simple variables wherever required.

1 INKEYS$

INKEYS is a string pseudovariable which gives to the specified variable the value of
the key pressed while the INKEY$ function is executed. INKEY$ is used to respond
to the pressing of individual keys without waiting for the key to end the

input. The computer just keeps “circling’’until it receives a message from the key
board.

18: A$=INKEYS$

23: B=ASC A$

30: IF B=0 THEN GOTO 10
40: PRINT B

Note: , (swiFr) , OEF , (1), (3], (»), (€, ,and [CL) all have
a vatue of NUL,

1 MEM

MEM is a numeric pseudovariable which has the value of the number of characters
of program memory remaining. The available program memory will be the total
memory less the space consumed by programs and array variables. MEM may

also be used as a command. Immediately after reset (Set the mode to PRO and
enter NEW), MEM has a value of 1278 bytes.

Pl is a numeric pseudovariable which has the value of P{, it is identical to the use
of the special Pl character () on the keyboard. Like other numbers the value
of Pl is kept to 1@ digit accuracy (3.141592654).

121

Functions
Numeric Functions

Numeric Functions

Numeric functions are a group of mathematical operations which take a single
numeric value and return a numeric value. They inciude trigonometric functions,
logarithmic functions, and functions which operate on the integer and sign parts
of a number. Many dialects of BASIC require that the argument to a function
be enclosed in parentheses. The PC-8 does not require these parentheses, except
when it is necessary to indicate what part of a more complex expression is to be
included in the argument.

LOG 100 + 18@ will be interpreted as:
(LOG 109} + 19a not LOG {100 + 10@).

1 ABS numeric expression

ABS is numeric function which returns the absolute value of the numeric argument.
The absolute value is the value af a number without regard to its sign. ABS —10
is 19.

1 ACS numeric expression

ACS is a numeric function which returns the arccosine of the numeric argument.
The arccosine is the angle whose cosine is equal to the expression. The value
returned depends on whether the PC-8 is in decimal degree, radian, or gradient
mode for angles. ACS .5 is 6@ in the decimal degree mode,

} 1 ASN numeric expression

ASN is a numeric function which returns the arcsine of the numeric argument.
The arcsine is the angle whase sine is equal to the expression, The value returned
depends on whether the PC-8 is in decimal degree, radian, or gradient mode for
angles, ASN .5 is 30 in the decimal degree made.

122

Functions
Numeric Functions

1 ATN numeric expression

ATN is a numeric function which returns the arctangent of the numeric argument.
The arctangent is the angle whose tangent is equal to the expression., The value
returned depends on whether the PC-8 is in decimal degree, radian, or gradient
mode for angles. ATN 1, is 45 in the decimal degree mode.

1 COS numeric expression

COS is a numeric function which returns the cosine of the angle argument. The
value returned depends on whether the PC-8 is in decimal degree, radian, or gradient
mode for angles, COS 6@ is .5 in the decimal degree mode.

1 DEG numeric expression

The DEG function converts an angle argument in DMS (Degree, Minute, Second)
format to DEG {Decimal Degree) form. In DMS format the integer portion of the
number represents the degrees, the first and second digits of the decimal represent
the minutes, the third and forth digits of the decimal represent the seconds, and
any further digits represent decimal seconds. For example, 55° 10° 445" is
represented as 55.10445. In DEG format the integer portion is degrees and the
decimal portion is decimal degrees, DEG 55 18445 is 55 17902778,

1 DMS numeric expression

DMS is a numeric function which converts an angle argument in DEG format to
DMS tormat {see DEG). DMS 55.17902778 is 55.18445,

123

Functions
Numeric Functions

1 EXP numeric expression

EXP is a numeric function which returns the value of e {2,718281828 — the base
of the natural logarithms} raised to the value of the numeric argument. EXP 1
is 2.718281828,

1 INT numeric expression

INT is a numeric function which returns the integer part of its numeric argument,
INT Pl is 3.

1 LOG numeric expression

LOG is a numeric function which returns the logarithm to the base 10 of its
numeric argument. LOG 180 is 2.

1 LN numeric expression

LN is a numeric function which returns the logarithm to the base e {2.718281828)
of its numeric arqument. LN 109 is 4 605170186,

124

Functions
Numeric Functions

1 RND numeric expression

RND is a numeric function which generates random numbers, If the value of the
argument is less than one hut greater than or equal to zero, the random number
is less than one and greater than or equal to zero. If the argument is an integer
greater than or equal to 1, the resuit is a random number greater than or equal
to 1 and less than or equal to the argument. If the argument is greater than or
equal to 1 and not an integer, the result is a random number greater than or equal
to 1 and less than ar equal to the smallest integer which is larger than the argument:
(In this case, the generation of the random number changes depending on the value
of the decimal portion of the argument.}:

----------- Result -------on-.n
Argument Lower Bound Upper Bound
5 @< <1
2 1 2
25 1 3

The same sequence of random numbers is normally generated because the same
“seed” is used each time the PC-B is turned on. To randomize the seed, see the
RANDOM verb.

1 SGN numeric expression

SGN is a numeric function which returns a value based on the sign of the argument.
If the argument s positive, the result is 1; if the argument is zero, the result is @; if
the argurment is negative, the resultis —1. SGN —5is —1.

1 SIN numeric expression

SIN is a numeric function which returns the sine of the angle argument. The
vatue returned depends on whether the PC-B is in decimal degree, radian, or gradient
mode for angles. SIN 30 is .5 in the decimal degree mode.

125

Functions
Numerie Functions

[1 SQR numeric expression

SQAR is a numeric function which returns the square root of its agrument. [t is
identical to the use of the special square root symbol t\/_} on the keyboard.
SOR 4is 2.

1 TAN numeric expression

TAN is a numeric function which returns the tangent of its angle argument. The
value returned depends on whether the PC-8 is in decimal degree, radian, or gradient
meode for angles, TAN 45 is 1 in the decimal degree mode.

126

Functions
String Functions

String Functions

String functions are a group of operations used for manipulating strings. Some
take a string argument and return a numeric value, Some take a string argument
and return a string. Some take a numeric value and return a string. Some take
a string argument and one or two numeric arguments and return a string. Many
dialects of BASIC require the argument of a function to be enclosed in parentheses.
The PC-8 does not require these parentheses, except when it is necessary to indicate
what part of a more complex expression is to be included in the argument. String
functions with two or three arguments all require the parentheses.

1 ASC string expression

ASC is a string function which returns the numeric ASCII code value of the first
character in its argument. The chart of ASCII codes and their relationship to
characters is givers in Appendix B. ASC “'A” is 65,

1 CHR$ numeric expression

CHR$ is a string function which returns the character which corresponds to the
numeric ASC1l code of its argument. The chart of ASCII codes and their relation-
ship to characters is given in Appendix B. CHRS$ 65 is A",

1 LEFT$ {string expression, numeric expression)

LEFT$ is a string function which returns the feftmost part of the string first
argument: The number of characters returned is determined by the numeric
expression. LEFTS {"ABCDEF", 2) is "AB",

|[1 LEN stringexpression

LEN is a string function which returns the length of the string argument. LEN
"ABCDEF" is 6.

127

Functions
String Functions

1 MID$ (string expression , num. exp. 1, num. exp. 2)

MID$ is a string function which returns a middle portion of the string first
argument. The first numeric argument indicates the first character position to be
included in the result. The second numeric argument indicates the number of
characters that are to be included, MID$ {"ABCDEF", 2, 3) is “BCD"".

—- [

1 RIGHTS$ (string expression , numeric expression)

RIGHTS is a string function which returns the rightmost part of the string first
argument. The number of characters returned is determined by the numeric
argument. RIGHTS {"ABCDEF", 3} is "DEF’™".

;. — e R B,

1 STR$ numeric expression

STRSE is a string function which returns a string which is the character represen-
tation of its numeric argument. It is the reverse of VAL. STR$ 1.59 is “1.59".

’7 1 VAL string expression

L

VAL is a string function which returns the numeric value of its string argument.
It is the reverse of STR$, The VAL of a non-number is zere. VAL '*1.59" is 1.59.

Note: The character-string convertible by VAL function to numerical value
consists of numerals (0 to 9}, symbols {+ and) and a symbol {E) indicating an
exponential portion. No other characters and symbols are included. If a character-
string includes other characters and symbals, any character-string on the right of
that character-string will be ignored. 1f included in a character-string, a space is
usually regarded as non-existing. If, however, a space is included in the portion {on
the right of E) corresponding to an exponential part, any character-string on the
right of the space will be ignored.

128

CHAPTER 9

TROUBLESHOOTING

This chapter provides you with some hints on what to do when your PC-8 does not
do what you expect it to do. It is divided into two parts — the first part deals
with general machine operation and the second with BASIC programming, For
each problem there are a series of suggestions provided. You should try each of
these, one at a time, until you have fixed the problem,

Machine Operation

If: | Then You Should:

You turn on the machine but there 1. Check to see that the slide switch is

i nathing an the display set to ON.
2. Pushthe |gpy key tosee if AUTO

POWER OFF has been activated,

3. Replace the batteries.

There is a display, but no response 1. Press CL- key toclear.

to keystrokes 2. Press [CA] {{sWFT] [cL }toclzar,
3. Turn OFF and ON again.
4, Hold down any key and push RESET.
5. Push RESET without any key.

You have typed in a calculation or 1. Push {ENTER].

answer and get no response

You are running a BASIC program 1. Push [ENTER].

and it displays something, and stops

You enter a calculation and it is 1. Change the mode from PROgram to

displayed in BASIC statement format RUN for calculations.

{colon after the first number)

You get no response from any keys. 1. Hotd down any key and push RESET.

2. If you get no response from any key
even when the above operation s

) performed, enter NEW B (ENTER] .

! (at PRO mode} This will clear the

| program, data and all reserved con-

| tents.

129

Chapter 9

BASIC Debugging

When entering a new BASIC program, it is usual for it not to work the first time.
Even if you are simply keying in a program that you know is correct, such as those
pravided in this manual, it is usual to make at least one typing error. If it is a new
program of any length, it will probably contain at least one logic error as well.
Fallowing are some general hints on how ta find and correct your errors.

You run your pragram and get an error message:

1. Go back to the PRQOgram mode and use the T or the _¥ . keys to recall the
line with the error. The cursor will be positioned at the place in the line
where the PC-8 got confused.

2. If you can’t find an obvious error in the way in which the line is written,
the problem may lie with the values which are being used. For example,
CHR$ (A} will preduce an error if A has a value of 1 because CHRS$ (1)
is an illegal character. Check the values of the variables in either the RUN
or the PROgram mode by typing in the name of the variable followed by

You RUN the program and don’t get an error message, but it doesn‘t do what
you expect.

3. Check through the program line by line using LIST and the [T | and [T keys
to see if you have entered the program correctly. It is surprising how many
errors can be fixed by just taking another look at the program.

4. Think about each line as you go through the program as if you were the
computer. Take sample values and try to apply the operation in each line
to see it you get the result that you expected,

5. Insert one ar more extra PRINT statements in your program to display
key values and key locations. Use these to isolate the parts of the program
that are working correctly and the location of the error. This approach
is also useful for determining which parts of a program have been executed,
You can also use STOP to temporarily halt execution at criticat points so
that several variables can be examined,

6. Use TRON and TROFF, either as cornmands or directly within the program
to trace the flow of the program through individual lines. Stop to examine
the contents of critical variables at crucial points. This is a very slow way
to find a problem, but sometimes it is also the only way.

CHAPTER 10

MAINTENANCE

Ta insure trouble-free operation of your PC-8 we recommend the following:

*

Always handle the PC-8 carefully as the liquid crystal display is made of
glass.

Keep the PC-8 in an area free from extreme temperature changes, moisture,
or dust. During warm weather, vehicles left in direct sunlight are subject to
high temperature build up. Prolonged exposure to high temperature may
cause damage to your PC-8.

Use conly a soft, dry cloth to clean the PC-8. Do not use solvents, water, or
wet cloths.

To avoid battery leakage, remove the hatteries when the PC-8 will not be in
use for an extended period of time.

The PC-8 has special soft keys. To avoid scratching the keys, do not push
them with hard, sharp ohjects,

If service is required, the computer should only be returned to an authorized
Radio Shack Service Center.

If the PC-8 is subjected to strang static electricity or external noise it may
“hang up” {all keys become inoperative). If this occurs, press the RESET
button while holding down any key. (See Troubleshooting}.

Keep this manual for further reference.

13

APPENDIX A

ERROR MESSAGES

There are nine different error codes built into the PC-8. The following table
will explain these codes.

Errar
Number

1

Meaning

Syntax error,

@ This means that the PC-8 cannot understand what you have en-
tered. Check for things such as semicolons on the ends of PRINT
statements, misspelied words, and incorrect usages.

3%/2
Calculation errar.
Here you have probably dene one of three things:

1. Tried to use too large a number,
Calculation results are greater than 9.999999999€ 99,

2. Tried to divide by zero.
5/0

3. Anitlogical calculation has been attempted.
LN -3¢ or ASN15

DiMension error/ Argument error.

® Array variable already exists.
Array specified without first dimensioning it.

Array subscript exceeds size of array specified in DIM statement.
DIM B (256)

¢ |ilegal function argument. This means that you have tried to make
the PC-B do something that it just cannot handle. An example
is specifying a top limit for a FOR . . . NEXT loop that is greater
than 32767. The reason for the error in this case is that the top
limit for a FOR . . . NEXT loop is stored in just two bytes. The
maximum, positive, signed integer value that two bytes can hold is
32767.

1@ FOR A=1 TO 32768

132

Error Messagas

Line Number error.
Here you have probably done one of two things:

1. Tried to use an unexgisting line number by the GOTO, GOSUB,
RUN, LIST or THEN etc.

2, Tried to use too large a line number. The maximum line num-
ber is 999,

Nesting error.

Subroutine nesting exceeds 10 levels,
FOR foop nesting exceeds 5 levels,

RETURN verb without a GOSUSB, NEXT verb without a FOR, or
READ verb without a DATA.

Buffer space exceeded.

Memory Overflow.

Generally this error happens when you've tried to DIMensien an array
that is too big for memory. This can also happen when a program
becomes too targe.

PRINT USING error.

This means that you have put an illegal format specifier into a USING
statement.

1/0 device error.

This error can happen only when you have the optional printer and/ar
cassette recorder connected to the PC-B. It means that there is a
problem with communication between the 1/0 device and the PC-8,

Other errors.

This code will be displayed whenever the computer has a problem that
is not covered by one of the other eight error codes. One of the most
common causes for this error is trying to access data in a variable is

one fashion le.g. A$) while the data was originally stored in the
variable in another fashion {e.g. A).

133

APPENDIX B

ASCIl CHARACTER
CODE CHART

The following chart shows the conversion values for use with CHR$ and ASC.
The column shows the first hex character or the first four binary bits, the row
shows the second hex character or the second binary bits. The upper left corner
of each box contains the decimal number for the character. The lower right
shows the character. If no character is shown then it is an itlegal character on the
PC-8. For example, the character ‘A’ is a decimal 65 or a hex 41 or a binary

d1ppeonl.

134

ASCH Character Code Chart

n =@ & O3J30oed]

First 4 bits The PC-8 does not recognize codes in the shaded area.
If you enter a code number in tha shaded area, an error will
result,
Hex @ 1 2 3 4 4] B 7
Binary | 0000 | 00@Y | @10 | 6311 | G100 | 0181 | 0110 | @111
@ @ 16 |3 a8 64 80 95 12
(L[0T NUL| SPACE @ @ P E '
1 1 17 33 49 65 81 97 113
2e01 ! 1 A Q

2 2 18 34 50 66 82 88 | na
6010 | _ & 2 B R | :

3 3 19 35 51 67 83 99 115
@1 C ’ # ! 3 C s

4 |a 0 |3 52 68 84 we | e
@100 $ 4 D T - :
5 & 2 a7 53 69 85 w7
0101 | % 5 E U

6 6 22 - {38 54 70 86 192 {118
agnd ' & 6 F \

7 7 . |23 39 65 71 87 93 {119
2111) - 7 G W :

8 8 |24 |40 56 72 88 104 . 129
000 - .o { 8 H X

9 (9 lz |a 57 73 89 195 12t
1801 | _ : } 9 I Y -
A 10 2% a2 58 74 99 g8 . | 122
1919 N * : J Z _
B 1 27, | a3 59 75 a1 197|123
1811 |- | I + ; K v oo .
C 12 28 | a4 60 76 92 168 7124
1100 o . < L ¥ o :

D 13 l29 a5 61 77 93 199 125
114 - = M ”

E 14 30 a5 82 78 94 110 126
1119 . > N ~

F 15 2 47 83 79 a5 1 127
1111 / ? O -

135

APPENDIX C

FORMATTING OUTPUT

It is sometimes important or useful to control the format as well as the content of
output. The PC-8 controls display formats with the USING verb, This verb allows
you to specify:

®

The number of digits

The location of the decimal paint
Scientific notation format

The number of string characters

+

These different formats are specified with an “output mask’*. This mask may be
a string constant or a string variable:

13: USING “ ###4#"
20: M$ = "RBZUZBE”
30: USING M$

When the USING verb is used with no mask, sll special formatting is cancelled.
443: USING

A USING verb may also be used within a PRINT statement:
50: PRINT USING M$; N

Wherever a USING verb is used, it will control the format of all output until a new
USING verb is encountered.

Numeric Masks

A numeric USING mask may only be used to display numeric values, i.e., numeric
constants or numeric variables, If a string constant or variable is displayed while
a numeric USING mask is in effect, the mask will be ignored. A value which is
to be displayed must always fit within the space provided by the mask. The mask
must reserve space for the sign character, even when the number will always be
positive. Thus a mask which shows four display positions may only be used to
display numbers with three digits.

136

Formatting Qutput

Specifying Number of Digits

The desired number of digits is specified using the ‘#' character. Each "#'in the
mask reserves space for one digit. The display or print always contains as many
characters as are designated in the mask. The number appears to the far right of
this field; the remaining positions to the left are filled with spaces. Positive
numbers therefore always have at least one space at the left of the field. Since
the PC-8 maintains 8 maximum of 10 significant digits, no more than 11 ‘#’ chara-
cters should be used in a numeric mask,

NOTE: In all examples in this appendix the beginning and end of the displayed
field will be marked with a * |’ character to show the size of the field.

Statement Display

10: USING " ###4 {Set the PC-8 to the RUN position,
type RUN, and press J

20: PRINT 25 | 28

3@: PRINT 350 I-350|

49: PRINT 1000 ERROR 7 IN 49

Notice that the last statement produced an error because 5 positions (4 digits and
a sign space} were required, but only 4 were provided in the mask,

Specifying a Decimal Point

A decimal point character, *.’, may be included in a numeric mask to indicate
the desired location of the decimal point. 1f the mask provides fewer significant
decimal digits than are required for the value to be displayed, the remaining
positions to the right will be fiiled with zeros, If there are more significant
decimal digits in the value than in the mask, the extra digits will be truncated

{not rounded):

Statement ' Display

19: USING " #E###. #&"

20: PRINT 25 | 25. 00|
30: PRINT —350.5 |-350. 59|
40: PRINT 2.547 | 2. 64|

137

Appendix C

Specifying Scientific Notation

A " ~ " character may be included in the mask to indicate that the number is to
be displayed in scientific notation. The ‘#' and ’.’ characters are used in the
mask to specify the format of the “characteristic” portion of the number, 1.e.,
the part which is displayed to the left of the E. Two ‘#’ characters should always
be used to the left of the decimal point to provide for the sign character and
one integer digit. The decimal point may be included, but is not required. Up
to 9 ‘#' characters may appear to the right of the decimal peint. Following
the characteristic portion, the exponentiation character, €, will be displayed
followed by one position for the sign and two positicns for the exponent.
Thus, the smallest scientific notation field would be provided by a mask of
“#4# " which would print numbers of the form © 2 E 99°. The largest scientific
notation field would be “## #####RFHH™" which would print numbers
such a5 '—1,234567890 E 12"

Statement Display

10: USING “ ###. ##~"
20: PRINT 2 | 2.00E 09|
30: PRINT —365.278 |-3. 65E 92

Specifying Alphanumeric Masks

String constants and variables are displayed using the ‘&’ character. Each ‘&'
indicates one character in the field to be displayed. The string will be positioned
at the left end of this field. If the string is shorter than the field, the remaining
spaces to the right will be filled with spaces. If the string is longer than the field,
the string will be truncated to the length of the field:

Statement Display

19: USING “&& & && &"
24: PRINT “ABC" |ABC |

30: PRINT “ABCDEFGH{" |ABCDEF|

138

Formatting Output

In most applications a USING mask will contain either all numeric or all string
formatting characters. Both may be included in one USING mask, however, for
certain purposes. In such cases, each switch from numeric to string formatting
characters or vice versa marks the boundary for a different value. Thus, a mask of
CHEHHARR & is a specification for displaying two separate values — a numeric
value which is allocated 5 positions and a string value which is allocated 4 positions:

Statement Display_
19: PRINT USING " ###. ##8&&",25; "CR” | 25. QOCR)|

2@: PRINT —5.789; “DB” | =5, 78DB]

Remember: Once specified, a USING format is used for all output which follows
until cancelled or changed by another USING verb.

APPENDIX D

EXPRESSION EVALUATION AND
OPERATOR PRIORITY

When the PC-8 is given a complex expression, it evaluates the parts of the expression
in a sequence which is determined by the pricrity of the individual parts of the
expression. If you enter the expression:

100 /5+45

as either a calculation or as a part of a program, the PC-8 does not know whether
you meant.

100 100

—_ = or + 45 = 65
5+45

Since the PC-8 must have some way to decide between these options, it uses its
rules of operator priority. Because division has a higher ““priority’’ than addition
{see the next page), it will choose 1o do the division first and then the additian, i.e.,
it will choose the second option and return a value of 65 for the expression.

139

Appendix D

Operator Priority

Operators on the PC-8 are evaluated with the following priorities from highest
to lowest:

1. Parentheses

2. Variables and Pseudovariables

3. Exponentiation {*} when preceded by a multiplication which omits the
operator

. Multiplication which omits the operator

. Functions

. Exponentiation {"}

. Unary minus, negative sign {—)

. Multiplication and division (%, /)

. Addition and subtraction (+, =)

. Relational operators {<, <=, =, <> >=, >}

. Logical operators (AND, OR)

- 5 W0 o~ ;Mo

- —

The fourth item refers to usage such as 2A or BC{2} in which a multiplication
operator is impiied, but not shown. The third refers to the combination of this
with exponentiation, such as 3A"3 or 6D 1.5. In these combined cases the
exponentiation will be done first and the multiplication second.

When there are two or more operators at the same priority level the expression
will be evaluated from left to right. (The exponentiation will be evaluated from
right to left). Note that with A+B—C, for example, the answer is the same whether
the addition or the subtraction is done first.

When an expression contains multiple nested parentheses, the innermost set is
evaluated first and evaluation then proceeds outward.

140

Expression Evaluation

Sample Evaluation

Starting with the expression:
((3+5-2)%6+2) / 10 LOG 10¢

The PC-8 would first evaluate the innermost set of parentheses. Since '+ and
‘—" are at the same level it would move from left to right and would do the addition
first:

{{(B—2)%6+2) /16" LOG 100
Then it would do subtraction:
{6)%6+2} /10~ LOG 103

or.

(6%6+2) / 1¢~ LOG 10@

In the next set of parentheses it would do the multiplication first:
{36+2) /10~ LOG 100

And then the addition:

(38) /198~ LOG 100
or:

38710 LOG 100

Now that the parentheses are cleared, the LOG function has the highest priority
50 it is done next:

/12

The exponentiation is done next:
38/100

And last of all the division is performed:
.38

This is the value of the expression.

141

APPENDIX E
FEATURE COMPARISON OF THE

PC-1, PC-2, PC-3, AND PC-8

The four Tandy pocket computers, the PC-1, the PC-2, the PC-3, and the PC-8 have
many features in common, but there are some significant differences. Sometimes
the same features are present, yet act in a slightly different fashion. In order to
facilitate the use of programs on different models the foilowing comparison charts
are provided,

Verbs and Commands

In the following chart the symbaol:

M indicates that the feature can only be used in manual execution, i.e., as a
command;

P indicates that the feature can only be used within a program;

B indicates that the feature can be used in both contexts.

When no symbol is shown, the feature is not available on that machine

PC-1 PC-2 PC-3 PC-8 Comments

AREAD P P P | SeeNote
ARUN :

BEEP
CHAIN
CLEAR
CLOAD
CLOAD?
CLS
COLOR
CONT
CSAVE
CSIZE
CURSOR
DEGREE B
DATA i

PC-2 has tone and
duration

Z T @OV
ZTZOO®
Tz =@

==
o=
o=

TP OO ZTOODZEWOETT

142

Verbs and Commands {continued)

PC-1

PC-2

PC-3

PC-8

Feature Comparison

Comments

DEBUG
DIM
END

FOR...TO...STEP

GOSuUB
GOTO
GCURSOR
GPRINT
GRAD
GRAPH
{F...THEN
INPUT
INPUT #
LET

LF

LINE
LIST
LLIST

LOCK
LPRINT
MERGE
NEW

NEXT
ON...ERROR
ON...GOSUB
ON...GOTO
PAUSE
PASS
PRINT
PRINT #
RADIAN
RANDOM
READ

REM

M

m = W 7w 7o

=B e v B i v

T =

ZZPWITDO VI TDIETDOX®

T O mmEmmWm

== TwoO©T © o - - M -

TEZ T

TTWm®UE T UOU

143

z= "TwWUVvTo @ mTYoUm

TTO@WWTOTZT YU

PC-1 can emulate with
LIST

See Note 2

See Note 2

Appendix E

Verhs and Commamds (continued}

PC-1 PC-2 PC-3 PC-8 | Comments
RESTORE P P P
RETURN P P P P
RLINE B
RMTOFF B
RMTON B
ROTATE B
RUN M M M M
SORGN B
STOP P P P P
TAB B
TEST B
TEXT B
TROFF B 8 B
TRON B B B
UNLOCK B
USING P B B B See Note 3
WAIT B B B

Note 1: There are some minor differences between the PC-B and the PC-1 in the
behavior of AREAD following PRINT, but these are unlikely to cause problems

in ordinary usage.

Note 2: Add PRINT = LPRINT and PRINT = PRINT statements to PC-1 programs
to achieve the desired results on the PC-8,

Note 3: On the PC-1 the USING format applies to all displays on the line in
which the USING clause appears, even if the variable precedes the verb. On the
other models, the USING format applies only to displays which follow the verb and
remains in effect until cancelled by ancther USING verb.

Example:

10 A=-123.458
20 PAUSE USING " #### ##"; A
30 PAUSE A, USING “####" ;. A

When excuted, this program displays the following:

® PC-1

® PC8

—123

—123.45

144

—123.45

—-123

—-123.45
—123

Faature Comparison

Pseudovariables

2 ‘ PC-3 ‘ PC-8 ‘ Commenti

C-
Y
Y
Y

INKEY$

MEM Y
Plorw Y
TIME

< < =<0

PC-1 has only o

< << =<|Q

Numeric Functions

P

-
2%
©
[+

Comments

(2
-

ABS
ACS
ASN
ATN
coS
DEG
DMS
EXP
INT
LOG
LN
NOT ;
POINT !
RND

SGN

SIN

SQR or+/
STATUS
TAN Y

A A S A S 4 Y
T I I e A
A I I e A Ny

< < <
<< <<
< <<=

PC-1 has only +/

KL L LA LL L LLLLLLCCK LD

-
-

145

Appendix E

String Functions

PC-1

N

w
v
[+

Comments

ASC
CHR$
LEFTS
LEN
MID$
RIGHTS
STR$
VAL

<< << < <<|O

€L <L <L L<<|D
A A Sl

8 Comments

*, /4, -

> 2=, =, <=,
AND, OR

&

<< =<|Q

<< <<=<!0

<< <<=<Q
< < << <0

Note: Other Tandy pocket computers {PC4, PC-5, PC-6 and PC-7} use different
dialects of BASIC, so programs written for these computers may not run on the

PC-8B.

146

APPENDIX F

NUMERIC PRECISION

Accuracy in Computations

While the PC-8 displays the results of calculations to an accuracy of 19 digits,
12 digits are used internally in calculations to provide additional accuracy. For
example: 5/9 vyields 5.55555555565E —01

internally which is rounded to the 1@th digit and displayed externally as
5.655555556E —P1
Similarly,

5/9% 9 vyields 4.99999999999E 00
internally and when this is rounded to 19 digits externally, the display will show
5.
The function employs an appraximation algorithm.
Far example:
SIN 38 vyields 5.00000000001E M
internally and when this is rounded to 10 digits externally, the display will show
@2.5
This is very significant in the lagical expression,
Since the internal value is used in the logical expression,
SIN3D=05
will be taken as False {@),

Theretore, if you use a logical expression in an IF statement, first enter the result
into a variable and then compare. The rounding occurs when the value is assigned
to a variable.

10: INPUT A
20: B=SIN A
30: lFBf@.S THEN. ..

147

Appendix F

Special Limits
in addition to the general limits described above and in Chapter 4, certain functions
of the PC-8 have their own special limits. These are shown in the chart below,

Functions Dynamic range
~1x310'" < x log vy < 100
=0, x<0: ERROR 2 {Ex.) @~ [ENTER) -~ ERROR 2
yox ¥=0,x>0:0 @~5 (ENTER] — 0.
(v*) ¥y < 0,x #integer: ERROR 2 {—4) ~3.5 [ENTER,— ERROR 2

The value of Y can be negative only if X is an integer.

In TAN x, however, the
following cases are excluded.

. 10
SIN x DEG.. le<1"><10 . DEG: Ix1=90 {2n—1)
COS x RAD: |x 1< 2 x 10 ‘ RAD: Ix|=2 {2n—1}
TAN x GRAD: tx1 < £ x10™ . GRAD: 'x =100 (20—1)
{n:integer)

ASN x (SIN' x)
Acsxicos' xp | —1Sx<t

ATN x ITAN xI{ [x 1< 1x 10"

LN x -9 100

LOG x Tx31077 <x<1x10

EXPx —1 x 10*% < x < 230.2585092
Vx 0<x<1x10'?

Functions other than those shown above can be calculated only when x stays
within the following range.

1x 107 < x| <1x10" and 0

As a rule, the error of functional calculations is less than * 1 at the lowest digit of
a displayed numerical value [at the lowest digit of mantissa in the case of scientific
notation system) within the above calculation range.

148

APPENDIX G

SPECIFICATIONS

Model:
Processor:

Programming Language:

Memory Capacity:

Stack:

Operators:

Numeric Precision:
Editing Features:

Memaory Protection:
Display:

Keys:
Power Supply:

Power Consumption:

PC-8 Pocket Computer
4 bit CMOS CPU

BASIC
System ROM: About 17.4 K Bytes
RAM
System About 500 Bytes
User
Fixed Memory Area 208 Bytes
(A~ Z A~ 7%

Program/Data Area 1278 Bytes
Sub-routine: 10 stacks Function: 16 stacks
FOR-NEXT: 5 stacks Data: 8 stacks
Addition, subtraction, multiplication, division, ex-

ponentiation, trigonometric and inverse trigonometric
functions, logarithmic and exponentiat functions, angle
conversion, square root, sign, absclute, integer, relational
operators, logical aperators.

1@ digits {mantissa} + 2 digits {exponent).

Cursor left and right, line up and down, character insert,
character delete.

CMOS Battery backup.

16 character liguid crystal display with b x 7 dot charac-
ters.

53 keys: Alphabetic, numeric, special symbols, and
functions. Numeric pad. User defined keys.

6.0V DC Lithium cells.

Type: CR-2032 Cat. No. 23-162

6.0V DC @ 0.07W

Approximately 756 hours of continuous operation under
normal conditions {based on 10 minutes of operation or
program execution and 50 minutes of display time per
hour at a temperature of 20°C}. The time may vary
slightly depending on usage and the type of battery
used.

149

Appendix G

Operating Temperature:
Dimensions:

Weight:
Accessories:

56°F ~ 86°F (13°C ~ 30°C).

5-5/16" (W) x 2-3/4" (D) x 3/8" (H)

135(W} x 70{D} x 9.5(H) mm,

Approximately 0.21 'bs. {95 g) with batteries

Hard cover, two lithium batteries {built-in}, keyboard
template, two strips of douhle-sided tape and operation
manual

150

APPENDIX H

PROGRAM EXAMPLES

Probably you have acquired knowledge on a number of program commands as
you have progressed up to this page. |t is necessary, however, to generate actual
programs by vourself in addition to those given in the instruction manual, so
that you can generate programs freely using BASIC language. Like driving a car
er playing tennis that can be improved by actuai practice, you can improve your
programming only by generating as many programs as possible regardless of your
skill. It is also important for you to refer to programs generated by others. For
your reference, the following pages contain a variety of programs using BASIC
commands,

(Radio Shack and/or its subsidiaries assume no responsibilities or obligations
for any losses or damages that could arise through the use of the software programs
employed in this operation manual.)

181

Appendix H

CONTENTS
(program title) {page)
o NEWTON’'S METHOD FOR FINDING ROOTS OF EQUATIONS. 153
® AVERAGE, VARIANCE AND STANDARD DEVIATION 157
® INTERSECTION BETWEEN CIRCLES AND STRAIGHT LINES 162
® NUMBER OF DAYS CALCULATION 167
® TYPING PRACTICE. s 171
® SOFTLANDING GAME e i 175
® MEMORY CHECKER e 179
® DOUBLE ROTATION. i 184

Showing the bytes used in each program

The number of bytes used in each program is shown at the end of each program
listing.

The way to find this out is as follows:

RUN mode

1) CLEAR

2) 1278 — MEM = number of bytes.

152

Program Examples

Program Title: NEWTON’'S METHOD FOR FINDING ROOTS OF

EQUATIONS

OVERVIEW (mathematical)

Finding the roots of equations is usually troublesome, but by using Newton's
Method the approximate roots of equations can be found.

When 1 root is found, depending on the interval width, by using Newton‘s
Method the starting point automatically changes.

CONTENTS

INSTRUCTIONS

Ko = X, - L)
1)

If the absolute value of the distance between X, and X, is less than 1078,
X,, is considered a root and is displayed. Here the first derivative is defined in
the following way:

f(X+h)—f(X)
h

(X =

{h is the minute interval)

Change E-8 in line 340 to change the value for 1078,
y

A

1

INPUT \
Starting point '
Minute interval !

Interval / !
|
|
|

i]
® @ (P ® 6
OUTPUTS Starting point
Root value (by pressing the key, the next interval’s root is found)

Interval width

EXAMPLE

x3 —2x* —x+2=0 {theroots are —1, 1, 2)

starting point = 0
minute interval = 107*
interval = 0.5

The above values are used in the calculation.
The functions are to be written into lines after 500 as subroutines.

153

Appendix H

How to type in the example:
1. Go into PRO mode by operating the mode change key.
2. 500B = ({X—2) % X—1) * X+2

510 RETURN That is all that had to be done.

Note: This program adopts the basic algorithm of the Newton method.
Multipled root may be obtained, but it occurs that one part of the root
is not displayed.

KEY OPERATION SEQUENCE

S,\}Zp Key Input Display Remarks
1 @_EB @] STARTING POINT = _ ﬂ;ﬁltng for starting point
2) MINUTE INTV. = _ \ilr\:;:ltng for minute interval
INTERVAL = _ Walting for interval width
input

2. | Display of roots

By repeatedly pressing the
1. key the roots of

the function are found.

164

FLOWCHART

Input {starting
point, interval
and minute
interval)

NT®
nonoH
e<<

50

60 70

-3
NO
non
-0

80

Newton’s Method
calculation

|

F+
=F
|

F W

100

Newton’s Method
calculation

155

Program Examples

Newton’s Method

calculation
subroutine

300

Function
calculation

|

Y=8B
X=A+C

320

Function

calculation

D=C
C=D-AXY/(B-Y)

350

500

Roots are
displayed
RETURN

Function
calculation
subroutine

B:

({X—=2)%kX—1)%kX+2

Appendix H

PROGRAM LIST MEMORY CONTENTS

18v¥a%: 1 A Minute interval
POINT= B 00

hu-ﬁ?;U; c X,

I0: INFUT * IHTERYAL=" M b flx+h)

dAIG=YiF=v1Z=h E

S@:IF 2= GOTO T8 F v

AREG=G-Wi0=5: 30TO 38 G v

THi=6:2=1 "

39:5030F @9 |

(v | |

DoY)
S 0D v 05 T

ey |

oo+
(&)

on

DR
=
=M

I =

[
D
o L g |

oo

ol

COOUn b e e O T D

ve o ae us
-

D S 5D

LICH I S R IR WD B i el

I R S I R
=
D I]

S

CR=2rkd-1a%d+2

[TI e « e] |

[ax]

D T

[

ETURH

M) B K Ry NS
e 30O N

Starting point

j o5

on
(2]

Interval

X

f(x)

N[< |X|s|<|C|A|lw|D|o|w|(0|Z2|2|r R |«

Initial flag

156

Program Examples

Program Title: AVERAGE, VARIANCE AND STANDARD DEVIA-
TION

OVERVIEW

If the data are input, the total sum, average, variance, and standard deviation will
be calculated for you. Revision of input data as well as data with weights is
possible.

CONTENTS
Total sum Zx;if; Standard deviation ¢ =+/¢?
Average x = M
zfi
Variance g2 = %X,f—_xllf,_ Number of data entries {up to 50)
i —

{when there are no weights f;=1)

INSTRUCTIONS
1. At A7) , select whether or not there are any weights, then input the
data.

2. is used to find any revision positions in the data. is

used to revise the data.

3. The total sum, average, variance, and standard deviation will be calculated

with (D).

EXAMPLE

x; | 141 | 142 | 143 | 144 | 145 (data with weights)
fi | 8 19 | 23 15 10

167

Appendix H

KEY OPERATION SEQUENCE

S'\’Itgp Key Input Display Remarks
1 @ NO. OF DATA = _ ngﬁltng for number of data
Waiting for the selection of
2 5 WEIGHTS weights/no weights.
YES =1/NO =2? _
3 1 X (1) =
?
4 14.1 FQ1)=
?
5 8 X (2) =
?
12 145 F (5) =
?
13 10 > End of the process

158

Program Examples

KEY OPERATION SEQUENCE

Sh}i? Key Input Display Remarks
1 X(1) =141
2 F(1)=8
3 X(2) =141 eif/aulf;(: xhiennpcl;;ta
errors are found
4 X(2) =
REVISION VALUE = _ Revised value is input
5 14.2 F(2) =19
1 (D) TOTAL SUM
2 10725
3 MEAN VALUE
4 14.3
5 VARIANCE
6 1.432432432[E—02
7 STD. DEV. ?i(i)s:Iay of standard devia-
8 1.196842683E—01
9 > Processing finished

159

Appendix H

FLOWCHART

Data input

CLEAR
WAIT @

20

Number of data

30

With or without
weight

Data input

Calculation

C o D

300

[Total sum, average,
variance, standard
deviation

400

Total sum, average,
variance, standard
deviation

160

Data revision

200

WAIT

210

ata display
x (i)

230 @

Y

250 < @

All data Y
displayed?

N

Data revision

Revised value
input

Program Examples

PROGRAM LIST

BIPRINT "YARIANCE':
PRINT @: PRINT *STI.
DEV.*: PRINT 5: END

53

MEMORY CONTENTS

t 64To T A N
816070 39
7RIFOR 1= TO P-1 BS v
K(*+ STRS (I+10+ c
. D
2351PALUSE B%: INPUT X(In
: GOTO 188 E
70 35 F N,
w=2 G070 159 G
179 3$="Fi{"+ STR$ (I+11+4
V'«I_V H
{TRAIPRUSE BS: INPUT F(I)
: GOTO 158 ! v
0 J Flag
K
L
M
N Vv
0
P Data number
Q Variance
255150 a
268 L DQUSE Bs: IF .
LEFT$ (B$s10="%" S Standard deviation
INPT “REVWISION VWALL T Total sum
Z=viN(I: 5OTO 299
TR IF LEFT$ (B$s12="F" u
INDlT "?EUIS'DN VAL v
£=vif(I): GOTD 299
1507 w
I 070 238 X Average
@:5=8: FOR Y
sX=X{I? 2
L LET F=RC X (P—1)| Data
319:N;N+-::—T+E*% =5+F % F (P-1) Data

X*X: NEXT 1
i X=T/N? D—("-N*K

PRI N’ “’ﬂ\HL JUM”:
PRINT T: PRINT "MERN
YHELUE®Y: PRINT ¥
161

Appendix H

Program Title: INTERSECTION BETWEEN CIRCLES AND
STRAIGHT LINES

OVERVIEW

The points of intersection between circles and straight lines in the X—Y plane
are found.

CONTENTS
The 2 points of intersection between a circle and a straight line are P and Q.

(Note) The angles are in degrees, minutes, and seconds and are to be input in
the following way:

123.1423 = 123 degrees 14 minutes 23 seconds.

P, (X, Y,)

a

> X
INSTRUCTIONS / P, (X, Y,)

1. If the straight line is determined by 2 points, (A] is used.
If the line is determined by 1 point and 1 direction angle, (B Jis used.

2. After the data are input, the results are displayed.

EXAMPLE
X, =-50
Y, = O
X,= 50 Xp= 0
Y,=100 Yp= 50 50 (50, 50)
Xo= 50 XQ = 50
Y, = 50 YQ =100 -50445°
R = 50 > X
a = 45° /P'

{Note) The coordinate values are

accurate up to 5 decimal places.

162

KEY OPERATION SEQUENCE
(when 2 points on the line are known)

Program Examples

S'\izp Key Input Display Remarks
1 (A] X0 =
2 50 Y0 =
3 50 R=_
4 50 X1 =
5 -50 Y1 =
6 0 X2 =
7 50 Y2 =
8 100 P—X 0.0000
(Xp, yp)
9 P—Y 49.9999
10 Q-X 50.0000
(xg.,y0)
11 a-vy 100.0000
12 > END

163

Appendix H

(when 1 point on the line and 1 direction angle are known)

S’\tlep Key Input Display Remarks
0.
1 X0 =
2 50 Y@ =
3 50 R=_
4 50 X1 =
5 —50 Y1=
6 0 A=
7 45 P—X 0.0000
{xp, yp)
8 P-Y 49.9999
9 Q-X 50.0000
(x0.y0)
10 Q-Y 100.0000
11 > END

164

FLOWCHART

If 2 points are
known

Program Examples

500

W=y (XK X+YXY)

If 1 point and 1
direction angle

are known

X=ACS (X/W)}
510 Y
e
N |«

RETURN

j

Input direction

angle o 600

Subroutine for
finding the X—Y

coordinates

0=A+CXCOSM
P=B+CXSINM

RETURN

K=WXSIN (X—H)
L=ACS(K/C)
M=H—-90—-L;N=H-90+L

Subroutine for finding
the X—Y coordinates

I

140 .
isplay of X—Y

D
coordinates

')

150

Subroutine for finding
the XY coordinates

160

Display of X—Y
values of point Q

Appendix H

PROGRAM LIST

iBa: CH=HD

113 KsC)

12 SNTH=9@+L

L H 5}

14@:f ING "nngngs.
BRARLYIVP-KYI0: PRINT
YR-YYSP

1SAiM=N: GOSUB 608

1ABIPRINT "R-x"30: PRINT

CHARRHYRY D

X= ACS fxsWx: IF ¥{(@
LET ®=3n8-%

S28:RETURN

@@ 0=a+Ck COS MIP=B+(C%
SIN M: RETURN

351

MEMORY CONTENTS

A X,
B Y,

C R

D X,

E Y,

F X,

G Y,

H Vv

]

J v

K h

L @

M op

N 00

o Xp, XQ
P YP, YQ
Q

R

S

7

U

v

w L

X AX, 8
Y AY

2

166

Program Examples

Program Tite: NUMBER OF DAYS CALCULATION

OVERVIEW

How many days has it been since you were born?

This program is convenient for answering such questions. By setting a certain
day, this program will output the number of days that have passed since that
day.

CONTENTS

[Instructions]
(a]
BASE YEAR ENTER
MONTH ENTER
DAY ENTER
TARGET YEAR ENTER
MONTH ENTER
DAY ENTER

To end the program, type in (Z] in place of the year.

[Examplel

from 1976 year 10 month 5 day
to 1982 year 6 month 4 day : 2068 days
to 1985 year 1 month 1 day : 3010 days

Note: Number of days calculated by this program doesn’t include the base day.
If you want the number that includes the base day, please change the
program as follows:

e

T4B:WAIT ¢ USING ¢ PRINT

BT T L¥] 4
HENET RS

167

Appendix H

KEY OPERATION SEQUENCE

SJZ’:) Key Input Display Remarks
1 a7 START YEAR =
2 1976 MONTH = iﬁstﬁaéed;? i7r16p:l:t)ar 0
3 10 DAY =
4 5 END YEAR =
s | e e o 1982 e ©
6 6 DAY =
7 4 DAYS = 2068.
8 END YEAR =
o | 1oms et ot 1985 yer
10 1 DAY =
1 1 DAYS = 3010.
12 END YEAR =
13 (Z) >

168

FLOWCHART

Program Examples

Calculation of
sum of days

Base year,
month, day N
510
> G=G+13 _
30 | — H=H_1 G=G+1
Target year,
month, day P
50 520
H=R 1= INT (365.25 % H)
G=8§ + INT(30.6xG) +1
P =T
530 J
70 I =1—INT (H/100)
Calculation of +INT(H/400) —
sum of days 306 — 122
J=1 RETURN
100
H=F
G=V
| =W
120
Calculation of
sum of days

169

Appendix H

PROGRAM LIST
I TEAR="S
Re "MONTH="35, " DAY="}

"END YEARR="iF»
NTH="3¥2 "DAY="}i

—J g« Cn

]

[t

T 4 Q0 0D
<
[=a B]
[}
<
=

wy I vy Te ot SR oy [vy [o
1t

s

BT I A

ke b ke b Bd
(-]
DO OO S S

< E

Mo O
wl

-4 I #4400 <D 7

in

o e

(M)

[
[e]

[y B B I 7Y

1]
[yl
o == vy e
|

o

o oon
L
Do]
~~4
] LI 0

o
(52
=
..
e I T A e B
-

H

oz

I- INT (Hs1880+
NT (Hs488)-3@p-122:
URN
END

™ m
< —

[a 3
[\
=
as

<

[]
)
=

MEMORY CONTENTS

Year (after calculation)

|«

Start year

Month of base date

Day of base date

Month of target date

Day of target date

Number of days

N<><§<C—I(ﬂIO'UOZZr‘?‘c.-—IO‘nmUOUJ>

170

Program Examples

Program Title: TYPING PRACTICE

OVERVIEW
Quick key operation!
How fast and accurate is your typing?
If you practice with this program, it will make programming much easier for
you. Improve your skill!

CONTENTS (such as calculation contents)

The number of characters (4 ~ 6) is randomly chosen.
The character arrangement (A ~ Z) is done randomly.
The allotted time depends on the number of characters and the grade level.
3 is the shortest time allotment while 1 is the longest.

INSTRUCTIONS

Run the program and 4 to 6 characters will be displayed. You are to type
in the same characters within the allotted time.

If they are all correct, you get 10 points.

If more than half are correct, you get 5 points,

After the allotted time is over, the next problem is displayed. The allotted time
depends on the grade, which has three levels (1, 2, 3).

3 is the shortest time allotment white 1 is the longest.

Point competition is done within the same grade category.

There are 10 problems, making the maximum score 100 points.

Appendix H

KEY OPERATION SEQUENCE

Sl\}(e;p Key Input Display Remarks
1 | DEF(Z] GRADE (1,2,3)? Grade input
2 1 AZBDC
3 (A] AZBDC A
a [(z] AZBDC AZ
After the 10 questions are
YOUR — SCORE = 80 answered the score is
displayed
1f your score is higher than
HIGHEST SCORE the high score the guidance
is displayed
>
_ When you want to play in
1 (A] HIGH—SCORE =80 the same grade
BWVS
2 BWVS B
YQOUR — SCORE =60
>

172

Program Examples

FLOWCHART

40 Characters arranged

according to random
numbers

|

Series of problem
characters input
character series

After the loop has
been processed

87
90

Character number

count
110 ~ Points are counted

depending on the number L

of correct answers -

Point become

the high score

173

APPENDIX H

PROGRAM LIST

19092 CLEAR ¢ DIM Ese 1683 IF Pxx LET ¥=P: WRIT
TiaC50T0: RANDOM 188: PRIMT YHIGHEST
132 IHPUT "GREBDECL2+327 SCOREY
"iL: WRIT @ TEIEND
ITeIF (L=la+il=20+ (=T
<21 THEN 15 455
LTy oo MEMORY CONTENTS

A%t WAIT 8:p=a:
PAUSE *HIGH-300RE=

v A$ v
JQIFOR 5=1 T0 1@ v
43: 0= FMD d+2:1¥$=""1R= Loop counter
INT (Bs2) Vv
SRIFOR C=8 TO B-1:CHC) N
-
88:0= RND 26:B3$(Li=

CHRE$ (D+&483:YE=v$+
CHR$ cD+%482: HEAT C

PAg="

TAESE: WAIT 343 USING
38:FOR Wel TO Be1d/L: Grads
PRINT Y$5a%: IF E=B
LET W=B#2@-L: GOTO 1
1
35:0$(E= INKEY$: IF ©
$LEy="" THEN 198 Score

BTTAF=ASHOFIED

v

E=g+1

v

NEZT Wigi=9 Loop counter

x| s|<|c|4|lwln|o|vliolz|g|r|R|lc]—-|T|0|n|mOj0|w

FOR W=a TO B-1: IF B
FOWA=CHCWY LET G=0+1
LZBIMEXRT Wi IF 3<=F THEN
156
138 IF 8= LET P=P+13: Loop counter
ROTO 154 High score
14A:P=F+5 Y$
LTBIMERT 53¢ USING @ Z
SEHSE YD roE =Y
::JHU..;’; YOUR-SCORE="; 8 (5) J
‘ cs6) |

174

Program Examples

Program Title: SOFTLANDING GAME

OVERVIEW

This game involves landing a rocket, with only a limited amount of fuel, as softly
as possible. The rocket is in free fall. The engine is used to slow down the free
falling rocket. If ignition takes place too soon or too much fuel is used,then the
rocket is thrust back out into space and becomes dust around the planet.

If all the fuel is burned up, the rocket hits the planet and blows up.

The aim is to land the rocket as softly as possible by controlling the engines
while watching how much fuel is burned.

CONTENTS

Gravity is set to be 5 m/{unit time)?.
If 5 units of fuel per a unit time are burnt, then gravity is offset.

Equations
H = Hg+ Vot + L at? H : height H,: initial height
2 V : speed Vo : initial speed
V = Vytat ' " o
a : gravitational F;: initial fuel
V2 = Vo +2aH acceleration F : fuel burned
: time
Hy = 500, Vo = —50, Fy = 200

The initial height, initial fuel level, and the wait time is stored in line 30 as data.
By changing these values the above variables can be changed.

INSTRUCTIONS
1. The program is started by pressing CA] . Press (0] ~ (9] keys

to adjust the amount of fuel used to land the rocket.

175

Appendix H

KEY OPERATION SEQUENCE

S’\Izp Key Input Display Remarks

1 |[DEF[A] KKKSTART *Ok X

Keys (0]~ (9] Height, speed, fuel left and
2 designate fuel burned | 500 —50 200 @ fuel burnt in unit time are

in unit time displayed.

[9]|452 -46 191 9
Repeat
{1f successful) SUCCESS !

FUEL LEFT: F=15

{If failed) GOOD BYE!!
REPLAY (Y/N)? Wait for input on whether
’ you wish to play again
Play again
[I] > End

176

FLOWCHART

Program Examples

e
10 ﬁ

Initial setup

50
Read data
70

Screen display
0

Any fuel left?

8

90 N
INKEY$
D$
0

10

Key not pressed C=A
130
Burnt fuel
exceeds fue! C=F

left

140 l

Calculation of the
rocket’s height
and speed

150

rocket

L/

higher than
ground level?

160

Speed and
height under
their limits?

N

GOOD BYE!!

200

SUCCESS!!

177

Appendix H

PROGRAM LIST MEMORY CONTENTS

A N
B$ Vv
C Fuel burned
D$ Fuel burned
E
F Initial fuel level, fuel left
- G
431 RESTORE H Initial height, height
SHIRESD BESaWrBFF B4 H |
BRINAIT W J
TAIPRINT USING “IREEYIH K
iSiFsC L
281 IF F<=8 Q070 178
I0:D$= INKEYS M
1@@: IF D$="" LET C=i: N
ROTO 138 0
1i8:C= VYaL 0% P
128:a=C Q
138:[F C»F LET C=F R
14k=t=t—5:§=L-3:H=H+:+n’ S Speed
EER-EoCT 8
158: IF H>@ GOTO 7@ T
1882 IF (ABS H<Si+{ HES y
5{51=2 PRINT “SUCCES \4
Stivr G070 138 w Wait time
LTRHIPRINT "GOOD BYEi!1*: X N,
50TO 199 v
1881 WAIT 158 PRINT
USING *EERE}FUEL L z8 v
EFT:F="iF
199:WAIT 58: PRIMT YREPL
AY CYSH) PYiZ3=
INKEYS
2EALIF (ZF=VY Y4+ E="N"

5OTO 134
gF="Y" GOTO 19

178

Program Examples

Program Title: MEMORY CHECKER

OVERVIEW

A line of 12 characters will be displayed on the screen for approx. 5 seconds.
Your memory will be tested by how well you input the above line after it has
disappeared.

CONTENTS

The following type of line will be displayed for approx. 5 seconds. There are
2 characters and 2 numbers in each set.

jharacter /Number

KK K XK KN KX HK

Set 1 Set 2 Set 3

The 3 sets shown above are to be memorized and then input as answers.

The computer will then analyze your answers and place you in one of the
possible 7 categories.

Each set is split into 2 parts of former 2 and latter 2 characters, giving a total
of 6 points when all the answers are correct.

Points Evaluation Message
0 IDIOT
BAD
AVERAGE
OK
GOOD !
X INTELLIGENT x
XKGENIUS* X

D e WIN| =

179

Appendix H

KEY OPERATION SEQUENCE

ngp Key Input Display Remarks
1 (A] MEMORY CHECK Title
Display of problem line
5 (5 sec.)
XOK XX KAXX X X X .. .character
X ...number
3 ANS. = Waiting for the input of
- set 1
4 (Example) ANS. = Waiting for the input of
AB12 — set 2
5 KoK XX ANS. = 3 ;/Ziiéing for the input of
6 | *xXxXx KKXX KKXX KX X Display of the input.
7 HKXX XX FKXX ?‘Il.sgga;::.())f the problem line
8 XX XX KX X HKX X Redisplay of the input
9 IDIOT
BAD
AVERAGE
oK display of category
GOOD!
X INTELLIGENT %
XXKGENIUSX)KX
10 REPLAY (Y/N) ? Player input request
11 1Y Jor[N](ENTER] If Y, go to step 2
> If N, END

180

Program Examples

FLOWCHART
(“pr)
20
Construction of the
problem line
150
Display of the {Subroutine 500}
problem line
(5 sec.)
160
200
Display of the {Subroutine 520)
input
200
Redisplay of the (Subroutine 500)
problem line
200
< Redisplay of the) (Subroutine 520)
answer input
210
Evaluation
of memory
300
Display of
category
370

REPLAY
input (Y/N)

181

Appendix H

PROGRAM LIST

—
)
we

b
-]
(v}

USIHD ¢ WeIT 28
RIMT “HMEMORY CHE
CLEAR @ RgHIDGH
nilh'*lvﬂ$ 187*1

Do)

+
Ly

-,
MR

-

-~ LA
(e}

Do e}
-
(B2 ot

(2]
O]

J-n -
R e
DU |
1+ ew
[
()
LI R}
|

(N7}
[
[xod)
wn
<

InIaTe:

- r—« Foes T
D 2.

by
e -
(]

BADY: GOTO

[N o T Y t:1 D}
[

(XY

iy

[ace]
LY e o B R w I Y [g R s R B 2 g
B s & B v e« BN s s L0 I ACU R
C% bed = =t 05— e 50 S

=

—

Ia:
T IZ\: NT * H®YERRGE":
1= 4 379
JHIFD 33a: HT * v GOT0
e]=
THIGE S4RIPRINT ¥ poopie:

&
||’T]

GOTD 37@

PRINT *x INTELLIGENT
*1 G070 378

PRINT "##OENIUS®*"

We=""1 IMPUT *REPLAY
CY/HITPY T WS

(u]
(7]
o
o)

- TV G

0

RN
P
)

o

e

oy
woom

[
L+ el
o} KT
[rc A
e wn

e
[y
5
r—l % '&'i- " om -'n

o
H Z50:IF WE=NY THEN o@we
12@] 398 IF W$="Y" THEN 5@

2

[}
(¥]

F ¥ GOTO 378
H ”ii"-HI +31= GOt
RIGHT# ﬂi-b': HEXT WRIT
I -H$
GOSUE
F

I

o

[Sl =
s

N e
[o)
[O IO
as wn mE wm wm

“ .8.- [XY

SRETURN
CWARIT 88: PPIHT USING

veEesEE LY -
GRESVYEECL I ESLZ)

' S25:USING
GHTE tx%(1D SIBIRETURN
I @@ END

¢ LOSUR Sua

oo 3

D)
(g
[xa]

" —
(e L=
(K31

t
—
[
—
™M
—
e

F AFLCI+Z3=VE0T) LET
H=N+1

2IBINERT I

Z2ER:H=N+

182

Program Examples

MEMORY CONTENTS

AS$
BS
c$ 2 columns of characters
D$
ES
F$
G
H$ vV
| Index
J Random number generation
K Random number generation
L Random number generation
M
N Counter
(0]
]
Q
R
S
T
U
\"
w$ input for REPLAY
X
Y
Z
G${6)%1 Characters (1 ~ 6)
N$(10)X1 Number table {1 ~ 10}
V$(3)%2| . 2 columns after answering (1 ~ 3)
X$(3k4 Work (1 ~ 3)
Y$(3)%4 Work (1 ~ 3)
Z$(31x 2 2 columns before answering {1 ~ 3}

183

Appendix H

Program Titl: DOUBLE ROTATION

OVERVIEW
Quickly putin order A,B,C-..--
This is a game that arranges randomly placed characters (A — J) in alphabetical
order. When the letters are arranged in the right order, a score is displayed. The
trick is to attack from the best place.
The sooner the characters are arranged, the better.
It is fun to race with 2 or 3 of your friends.

INSTRUCTIONS

1. After the program is initiated, by pressing A], "DOUBLE ROTA-
TION” is displayed. A random sequence of characters (A — J) is then dis-
played.

2. The space in between the characters is taken as the break points {1 — 9)
where the numbers are placed. Inputing a break number causes the characters
on each side of the breakpoint to be rotated by moving them to the far ends
of the row.

3. After the characters have been placed in order, the number of moves required
is displayed as the score. The lower the score the better.

EXAMPLE

In (1) 4 is input, “F" and 1 2 3 4 5 6 7 8 9
“1" move to each side chang- (1) [E { H‘ B l F [I ’A } C ‘ J 1DIG}
ing the configuration to (2). ® L d
If 1 is now input, the “E” 12 3 4 5 6 7 8 9
moves to the far right but m[F\EIH BIA[C'J‘D'G[I}
“F*’ stays in its place because T T
it is already in the far left 1. 2 38 4 5 6 7 8 9
position, becoming configura- (3) [F ‘ H ‘ B ’ A l C 1 J I D ‘ G l | [E ’

tion (3).

184

Program Examples

KEY OPERATION SEQUENCE

S'\}zp Key Input Display Remarks
1 [(A] DOUBLE ROTATION
A~ Random requence display
N : Numbers between 1 and 9
2 [I] @ : are selected and input
Repeated input
ABCDEFGHIJ
GAME END
YQUR SCORE 35
>
Does player want to play
using the same beginning
random characters?
L A~
Same as @ in
succession

If the 2 lines are changed as below, then the game is easier to play and (@] key
can be used.

180: C= VAL D$: IF D$ = 0" GOTO 210
240: IF C<=1GOTO 260

185

Appendix H

FLOWCHART

10 400
Initial setup
70
Random number
generated
110
Characters are sto-
red depending on
random numbers
170

A sequence of
characters is
displayed

INKEYS
D$

210

Sequence of chara-
cters is shifted ac-
cording to the
input numbers

310

f

Game over
score

END

186

PROGRAM LIST

lﬁl””*' CLEAR ¢ WAIT 5B
I
TI

NIOM ¢ DIM B304
¥ iy UE LE ROTE [*

i
wn
T e

i
SATB$(E="ARCDEFGHIJ
481k p=ry
SILH
=15H
e
o
235:

SE:
Bia=n OR 3
LIBIBECL=EFCL0+ MIDF (E

$(B)1Rs 130 NEXNT I

12

1381 H=5

ITHIDF="": PRINT B$(Z3:D
$= IHEEYS

18B:C= VAL DS

I9BIIF C=8 GOTO 178

ZIBIEFCI)= LEFTE (B$(20»

2281E$045= RIGHTS (E$02)
s 18~

2481 IF C=1 GOTO 268

Z50:E$CI0= RIGHTS (E$(I)

212+ LEFT#
13

(BF(Z)s~

ZeEiIF D=9 B0TO 238

ZTErR$(dr= RIGHTS (B%(4)
v3-Ch+ LEFT# (E$(4
13

BRI BF(20=BF(Tr+BF 4

Z":’-‘E“H—?‘H’Z

ZBa:IF BFCZ3{>B$i02 GOTO
158

T18:PAUSE “GAME ENDY

IZBIWAIT 288: PRINT
USING “S833*:*YOUR S
CORE" M

IIHLEND

4@@:*BE": wAlT S@: BOTO o

28

463

Program Examples

MEMORY CONTENTS

o]

v
v
A

(@]

D$ Input key

IOl |l m

<

Score

Random numbers

v

Nl X[X| 2]l <] C| | »| D O] © O 2| 2 | K «

BS (4) Character sequences

187

INDEX
& 29 CLOAD?
* 33 Clear key
+ 33 CONT
- 33 cos
/ 33 CSAVE
~ 33 Cursor
v < 126 | Cassette
< 34 Commands
« 17 Compatibility
<= 34 Constants
<> 34 DATA
- 34 DEF key
> 34 DEG
> 17 DEGREE
> = 34 DELete key
m 121 DIM
t 130 DMS
{ 130 Debugging
ABS 122 Display
AC adaptor, PC-3 Printer/ END
Cassette Interface 51 ENTER key
ACS 122 EXP
AND 35 Editing calculations
AREAD 77 Editing programs
ASC 127 Error Messages
ASCII 134 Exponentiation
ASN 122 Expressions
ATN 123 FOR...TO...STEP
Arrays 30 Formatting output
Auto off (Auto Power Off) 14 Functions
Batteries 1 GOsuB
Busy 8 GOTO
CA key 7 | GRAD
CHAIN 79 Hexadecimal
CHR$ 127 IF ... THEN
CLEAR 81 INKEY$

INPUT

CLOAD 64

65

7

66
123
67

8

57

40, 64
142
27,29
83

49
123
82

20

84
123
130

86

6, 15
124
17

42
132
124
32

87
136
37,124
89
68, 90
91

29

92
121
93

INPUT #

INSert key

INT

LEFTS$

LEN

LET

LIST

LLIST

LN

LOG

LPRINT

Labelled programs
Limits of numbers
Line numbers
Logical expressions
Loops

MEM

MERGE

MID$

Maintenance
Masks

Memory Protection
NEW

NEXT

NOT

Numeric expressions
Numeric variables
ON (Start up)

ON ... GOsuUB
ON... GOTO
OR

Operator precedence

Operator priority
Operators

P <> NP

PASS

PAUSE

PI

PRINT

PRINT #
PROgram mode

95
43
124
127
127
97
69
70
124
124
98
49
28
39
35
46
121
71
128
131
136
47
74
100
35
33
30
14
101
102
35
37
139
33
56
75
103
121
106
107
40

189

Paper feed
Parentheses

Power
Preallocated variables
Printer
Printer/Cassette Interface
Priority

Program
Pseudovariables
RADIAN
RANDOM

READ

REM

RESET
RESTORE
RETURN
RIGHTS$

RND

RUN

RUN mode

Range of numbers
Relational expressions
Remote On/Off
SGN

SHIFT key

SIN

SQR

STOP

STR$

Scientific notation
Square root
Statements

String expressions
String variables
Subroutines

TAN

TROFF

TRON

Tape, external
Tape

Template

Index

55
37
52
31
56
51
140
39
121
109
110
111
112

113
114
128
125
76
40
148
34
52
125
15, 16
125
126
115
128
27
126
39
33
30
89
126
116
117
57
60
50

Index

Troubleshooting 129 Variables 30
USING 118 Verbs 39,77
VAL 128 WAIT 120

190

SERVICE POLICY

Radio Shack’s nationwide network
of service facilities provides quick,
convenient, and reliable repair
services for all of its computer
products, in most instances,
Warranty service will be performed
in accordance with Radio Shack’s
Limited Warranty. Non-warranty
service will be provided at
reasonable parts and labor costs.

6/86

RADIO SHACK
A Division of Tandy Corporation
Fort Worth, Texas 76102

Printed in Japan

Scanned by Dale at no cost

