
~4

Us

-3

HEWLETT-PACKARD

HP-16C
Computer Scientist

OWNER S HANDBOOK

I.III

I

ieSSSSIImini
iiiiiiawl«i

mmn mtrnt mrmi M*m* tmtm i

WKtni W4MU WK0013 7W7WW TltflU
tWMII MM It'l JBF47Sf2 H7F37W tWHN

^37=- (-W)
Ris=i(+W)

NOTICE
Hewlett-Packard Company makes no express or implied

warranty with regard to the keystroke procedures and
program material offered or their merchantability or their

fitness for any particular purpose. The keystroke procedures

and program material are made available solely on an "as is"

basis, and the entire risk as to their quality and performance is

with the user. Should the keystroke procedures or program
material prove defective, the user (and not Hewlett-Packard

Company nor any other party) shall bear the entire cost of all

necessary correction and all incidental or consequential

damages. Hewlett-Packard Company shall not be liable for

any incidental or consequential damages in connection with

or arising out of the furnishing, use, or performance of the

keystroke procedures or program material.

Thai HEWLETT
m^f!M PACKARD

HP-16C
Computer Scientist

Owner's Handbook

April 1982

00016-90001

Printed in U.S.A. © Hewlett-Packard Company 1 982

Introduction

Welcome to the world of the Hewlett-Packard Computer Scientist!

You're in good company with HP—the calculator of choice for

astronauts in the space shuttle, climbers on Mt. Everest,

yachtsmen in the America's Cup, and engineers, scientists, and
students the world over.

The HP-16C is a versatile and unique calculator, especially

designed for the many professionals and students who work with

computers and microprocessors—whether as programmers or

designers. The HP-16C specialized design provides:

• Integer arithmetic in four number bases (hexadecimal,

decimal, octal, and binary), operating in l's or 2's Complement
or Unsigned mode.

• A variable word size, selected by the user, up to a maximum of

64 bits.

• Logical operators and bit manipulations.

• 203 bytes of user memory, providing up to 203 program lines.

• Floating-point decimal arithmetic.

• Continuous Memory, retaining data and program instructions

indefinitely.

• Extremely low power consumption and long battery life.

This handbook is written with the professional in mind—someone
already familiar with the principles of computer organization and
binary operations. The handbook accommodates a wide range of

expertise, however. For a quick overview of and reference to the

calculator's operations, use the Function Summary and Index—the

blue-edged pages just in front of the Subject Index.

Part I of the handbook, HP-16C Fundamentals, covers the specific

operations of the HP-16C, as well as its RPN (Reverse Polish

Notation) logic system. Part II, HP-16C Programming, is dedicated

to keystroke programming methods and capabilities. Each pro-

gramming section is structured to give first a general explanation

2

Introduction 3

of operations, then examples, then a more detailed look at certain

features. This makes it easy for you to get a quick picture of how
the system operates, if this is all you need.

The functions discussed in sections 1 and 2 of part I and in part II

(HP-16C Programming) are similar to those used in certain other

HP calculators, while the features unique to the HP-16C are

concentrated in sections 3 through 6.

Before starting these sections, you can get a brief introduction to

the capabilities of the HP-16C by working through the HP-16C: A
Quick Look, starting on page 10.

Finally, the appendices include details on error and flag

conditions, lists of operations with special characteristics, and
warranty and service information. The Function Summary and
Index at the back of the handbook provides short descriptions of

every key's function, with page references to more comprehensive

material within the handbook. It makes it easy to get the most from

your HP-16C!

Contents

The HP-16C: A Quick Look 10
Keyboard Operation 10

Integer Calculations 11

Floating-Point Calculations 11

Programmed Solutions 12

Parti: HP-16C Fundamentals 15
Section 1: Getting Started 16

Power On and Off 16
Keyboard Operation 16

Primary and Alternate Functions 16
Clearing Prefix Keys 17
The "CLEAR" keys 17
Display Clearing:

|
CLxl and

I
BSPl 17

One-Number Functions 18
Two-Number Functions and [ENTER] 18

Continuous Memory 19

What is Retained 19
Resetting Continuous Memory 20

Section 2: The Automatic Memory Stack 21
The Memory Stack and Stack Manipulation 21

Stack Manipulation Functions 22
The LAST X Register 23

Numeric Functions and the Stack 24
Stack Movement 24
Nested Calculations 25
Calculations With Constants 26

Section 3: Number and Display Control 28
Integer Mode 28

Number Base Modes 28
Temporary Display ("SHOW") 28

4

Contents 5

Complement Modes and Unsigned Mode 29
*^ 1 's Complement Mode 30
% 2's Complement Mode 30

Unsigned Mode 30
' ^ Word Size and Window Display 31

Word Size 32
—

1

'jl Windows 33
Scrolling 33

"^5 The Display and Internal Representation 35

^| F|a9S 36""^ Machine Status
(
[STATUS]) 37

Special Displays 38
Annunciators 38

^J Error Display 38
Low-Power Indication 38

Section 4: Arithmetic and Bit Manipulation
Functions 39
Carry and Out-of-Range Conditions 39

^5 Flag 4: Carry (C) 39
Flag 5: Out-of-Range (G) 40

Arithmetic Functions 41

^p-a Addition. Subtraction, Multiplication, and Divison 41
Remainder After Division and [RMD] 43
Square Root 44
Negative Numbers and Complementing 44

Logical Operations 44
NOT 45
AND 45
OR 45
EXCLUSIVE OR 46

Shifting and Rotating Bits 46
Shifting Bits 46
Rotating Bits 48

Setting, Clearing, and Testing Bits 50
—^ Masking 51

Bit Summation 52
"Double" Functions 52

_ Double Multiply 52—^ Double Divide 53
_ Double Remainder 54
^ Example: Applying Double Divide 54

6 Contents

Section 5: Floating-Point Numbers 56
Converting to Floating-Point Decimal Mode 56

Conversion in the Stack 56
Other Effects of Converting to Floating Point Mode 57

Digit Entry and Other Display Formats 58
Returning to Integer Mode 59

Conversion in the Stack 59
Other Effects of Converting to Integer Mode 60

Floating-Point Arithmetic 61

Functions 61

The Out-of-Range Flag 61

Functions Not Active in Floating Point Mode 61

Digit Separators 61

Section 6: Memory and Storage 62

Memory Allocation 62
Converting Storage Registers to Program Memory 62

Converting Program Memory to Storage Registers 63
Storage Register Size 63
Viewing the Status of Memory Allocation (|

MEM
|) 65

Storage Register Operations 66
Storing and Recalling Numbers Directly 66
Alteration of Register Contents 67

Clearing Data Storage Registers 68

The Index Register 68

Abbreviated Key Sequences 68

Storing and Recalling Numbers in the Index Register 68

Storing and Recalling Numbers Indirectly 69

Part II: HP-16C Programming 71

Section 7: Programming Basics 72
The Mechanics 72

Creating a Program 72
Loading a Program 72
Running a Program 75
Intermediate Program Stops 75
Data Input 76
Program Memory 77
Program Instructions and Keycodes 77

Example 78

Contents 7

_^ Further Information 80
~~ Program Labels 80

-~ Unprogrammed Program Stops 81^ Nonprogrammable Functions 81

-9
_^ Section 8: Program Editing 82
s*1 The Mechanics 82

-^i
Moving to a Line in Program Memory 82
Deleting Program Lines 83

_ Inserting Program Lines 83
Example 83

•"^ Further Information 85
Line Position 85
Initializing Calculator Status 85

Section 9: Program Branching and Controls 87
— »^ The Mechanics 87

Branching 87
Indirect Branching Using the Index Register 88
Conditional Tests 88^9 Testing for Set Flags and Set Bits 89

a Loop Control with Counters: fPSZ"| and Qsz) 90
Example g
Further Information g4

Subroutines 94
Program Versus Keyboard Use of | GSB

| 95

Appendix A: Errors and Flags 96
Error Conditions 95
Functions That Affect Flags 98

Appendix B: Classes of Operations 99
Operations Terminating Digit Entry 99
Operations Affecting Stack Lift 99

Disabling Operations 99
Neutral Operations 99

—^ Enabling Operations 100
Operations Affecting the LAST X Register 100

~\J Operations Affecting Scrolling 100
Prefix Keys 101

*J Operations Not Active in Floating-Point Decimal Mode 101

"3

8 Contents

Appendix C: Battery, Warranty, and
Service Information 102

Batteries 102

Low-Power Indication 103

Installing New Batteries 104

Verifying Proper Operation (Self-Tests) 106

Limited One-Year Warranty 108

What We Will Do 1°8

What Is Not Covered 108

Warranty for Consumer Transactions in the

United Kingdom 108

Obligation to Make Changes 109

Warranty Information 109

Service 110

Obtaining Repair Service in the

United States 11°

Obtaining Repair Service in Europe 110

International Service Information 111

Service Repair Charge 111

Service Warranty 112

Shipping Instructions 112

Further Information 113

Programming and Applications Assistance 113

Dealer and Product Information 113

Temperature Specifications 113

Potential for Radio and Television Interference

(for U.S.A. Only) 113

Appendix D: Programs for Format Conversion 115

Function Summary and Index 1 20

fONl 120

Clearing 120

Digit Entry 120

Stack Rearrangement 121

Number and Display Control 121

Mathematics 121

Bit Manipulation 122

Memory and Storage 123

Index Register Control 123

Contents 9

Programming 123
Conditionals 124

Subject Index 125

The HP- 16C Keyboard and Memory Inside Back Cover

TheHP-16C:
A Quick Look

The HP-16C Computer Scientist is a powerful problem solver,

operating in either Integer mode or Floating-Point Decimal mode.

In Integer mode you can perform integer binary arithmetic,

number base conversion, bit manipulations, and logical opera-

tions. In Floating-Point Decimal mode you can work out extensive

floating-point calculations. Programming can be done in both

modes. The HP-16C Continuous Memory retains data and program

instructions indefinitely until you choose to reset it.

An important feature of the HP-16C is its extremely low power

consumption. This efficiency eliminates the need for a recharger

and provides a lightweight, compact design. Power consumption in

the HP-16C is so low that the average battery life in normal use is 6

to 12 months. In addition, the low-power indicator gives you plenty

of warning before the calculator stops functioning.

The HP-16C also conserves power by automatically shutting its

display off if it is left inactive for a few minutes.

Keyboard Operation

Your Hewlett-Packard calculator uses Reverse Polish Notation

(RPN), an operating logic that involves the use of the I
ENTER

|
key.

The use of
I
ENTER

|
eliminates the need for parentheses in

calculations; instead calculations are performed using a memory
stack. For example, let's look at the arithmetic functions.

With the calculator on (press
I
ON

|
if necessary), select a number

base (hexadecimal, decimal, octal, or binary) in Integer mode by

pressing the key marked I
HEX

I , I
DEC

I , |OCT| , or I
BIN

I . This

establishes the number base mode for the display, and is indicated

by the presence of an h, o, d, or b at the right of the display. The

default mode (at initial turn-on or Continuous Memory reset) is

Hexadecimal (Integer). You can clear the display to zero by

pressing [Til CLx |
(a blue-printed function).*

* If you have not used an HP calculator before, notice that most keys have three labels. To

use the main function—the one printed in white on top of the key—just press that key.

For those printed in gold or blue, press the gold [TJ key or the blue [T| key first.

10

TheHP-16C: A Quick Look 1

1

To perform arithmetic, key in the two operands—separated by
|
ENTER |—and then the operator. The function is executed when its

key is pressed, and the result immediately appears. If you enter a
digit incorrectly, press |BSPl to undo the mistake, then key in the
correct digit.

Integer Calculations

When you set one of the number base modes, the calculator
operates in Integer mode.

To Compute* Press Display

(in base 2) rglfcLTiniNl b
1111-1 11111 ENTERHE 1110 b
1111X11 1111

|
ENTER 110 101101 b

You can also calculate using a value already in the display:

To Compute Press Display

101101 +10 100 10110 b
10110 AND 1111 1111 |~f~l [and] 110 b

(The operation results in the display of a C annunciator,
signifying that the carry flag has been set. Flags are explained on
page 36. Press |_9jlCFj4to clear the flag and the annunciator.)

Notice that in the four examples:

• Both numbers are keyed in before you press the operator key.

•
|
ENTER

|
is used only to separate two numbers that are keyed in

one after the other.

• Pressing a function key—in this case 0, S. 0, or | ANDj—
executes the function immediately and displays the results.

Floating-Point Calculations

The HP-16C can perform floating-point decimal arithmetic when it

is in Floating-Point Decimal mode. The
I
FLOAT

[function will
convert the calculator from Integer mode into Floating Point mode
and display the specified number of decimal places.

*The calculator should display 2-16-0000 when f7| I
STATUS

I is pressed. If it does not,
refer to page 37.

12 The HP-16C: A Quick Look

To Compute Keystrokes Display

(floating-point decimal) [fl [FL0AT| 4 |BSP| 0.0000

-4.9 + 6 4.9 [CHS] [ENTER] 6 -0.8167

^60" 6onnnn 7.7460

Programmed Solutions

Writing a Program. The HP-16C is keystroke-programmable:

you can program it simply by recording the same keystrokes you

use to evaluate a problem manually.

Example: Write an iterative pro-

gram that adds 1 continually to a

given number.

Keystrokes

9 P/R

fTI CLEAR I
PRGM

|

1

B

Q]SHOW [BIN]

IGTOIA

Display*

000-

000-

001-43.22.

002-

003-

1

40

004- 42 26

005- 22 A

Sets calculator to

Program mode (PRGM
annunciator on). Line

000.

Clears program memory.

Assigns this program
label "A".

Line 002: 1.

Line 003: adds 1 to

whatever is in display

when program is run.

Momentarily pauses and
displays binary result.

Continues execution in a

loop.

"The display includes line numbers and keycodes. Keycodes are two-digit numbers that

indicate the row and column position of the key(s) pressed.

The HP-16C: A Quick Look 13/14

Keystrokes Display

fT) |P/R| Returns calculator to

Run mode; no PRGM
annunciator. Display

will show the result of

the last calculation

performed.

Running the Program. Key the starting number (for example,

zero) into the display. You do not need to use
I
ENTER

|
since starting

the program will separate the two numbers to be added. The
program above adds 1 to whatever number you key in.

Keystrokes Display

DEC

16R1 1WSIZE]

[gseFIa 1

10
11

100

Converts to Integer

mode, base 10. (You can
start in any number
base; the program will

display the numbers in

binary.)

Sets word size to 16.

Initial number: 0.

Addresses and starts a

program with label "A".

The momentary displays

are binary.

22 d Since this is an endless

loop, stop program
execution with | R/S |

(run/ stop). The display

shows the decimal

equivalent of the binary

value at the particular

moment you press |R/S| .

This introduction to the HP-16C should give you a feel for its

operation. It is only a glimpse, however; for a look at the dozens of

other powerful HP-16C functions, turn the page and explore Part I,

HP-16C Fundamentals.

5

5

-3

"3

Section 1

Getting Started

This section provides a detailed orientation to general use of the

HP-16C: digit entry, display clearing, the use of |
ENTER

I
and RPN

(Reverse Polish Notation), and Continuous Memory. Although the

examples use Integer mode, all features operate identically in

Integer and Floating-Point Decimal modes unless otherwise

indicated. This material has been written primarily for those

unfamiliar with these features of current Hewlett-Packard

calculators.

Power On and Off

The |
ON

|

key turns the HP-16C on and off.* To conserve power, the

calculator automatically turns itself off after a few minutes of

inactivity.

Keyboard Operation

Primary and Alternate Functions

Most keys on your HP-16C perform one primary and two alternate

("shifted") functions. 1' To select the primary function printed on the

face of a key, press only that key. For example: {*]. To select the

alternate function printed in gold above the key or in blue below

the key, press the like-colored prefix key ({T\ or [IT]) followed by the

function key. For example: |T| |XOR| and [~q~j| DBL-s-j .

* Note the
I
ON

I
key is lower than the other keys to prevent its being inadvertently pressed.

1 Throughout this handbook, we will observe certain conventions in referring to

functions. References to the function itself will appear as just the function name in a

box, such as "the | MEM
|
function." References to using the key will include the prefix

key, such as "press [jf] I
MEM

I

." References to the functions printed in gold under the

brackets labeled "CLEAR," "SET COMPL," or "SHOW" will be preceded by the word

"CLEAR," "SET COMPL," or "SHOW," such as "the CLEAR
I
REG

I
function" or "press g]

SHOW [DEC]."

When a prefix key can be followed by any of several keys, the reference will specify the

possible keys in braces. For example, "press Rl l
WINDOW

1 10 to 7}".

16

Section 1 : Getting Started 17

Notice that when you press the [7] or

IT] prefix key, an f or g annunciator

appears and remains in the display

until another key is pressed.

Clearing Prefix Keys

A prefix key is any key that must be followed by one or more
additional keys to complete the key sequence for a function. There
is a list of all prefix keys in appendix B.

When any prefix key (such as I STO
[
or {f}) has been pressed,

pressing Q] CLEAR |
PREFIX

|
will clear that prefix key, leaving the

calculator ready for a new keystroke. If you have mistakenly
pressed |T) instead of [][] or vice-versa, you can correct it merely by
pressing the other key.

The "CLEAR "Keys

The "CLEAR" operations are listed below. Clearing a register

means to replace its contents with zero.

Clearing Sequence Effect

|T|CLEAR | PRGM
|

In Run mode:

In Program mode:

[fjCLEAR
|
REG

|

RlCLEAR | PREFIX |

Repositions program memory to line 000.

Clears entire program memory.

Clears all data storage registers.

Cancels any prefix from a partially

entered key sequence.

Display Clearing:
|
CLxl and

|
BSP|

The HP-16C has two types of display clearing operations: |CLx|

(clear X) and |BSP| (6ac7g space).

In Run mode:

• |CLx| clears the display to zero.

• I BSP
|
deletes only the last digit in the display if digit entry has

not been terminated. (I
ENTER

I
and most other functions

terminate digit entry so that the next digit keyed in becomes
part of a new number.) You can then key in (a) new digit(s) to

replace the one(s) deleted. If digit entry has been terminated,

then |
BSP

|
acts like |CLx| .

h
f

18 Section 1 : Getting Started

Keystrokes Display

I ucv I

|

HEX
|

Oca II1UUC LJlopiay

shows last result.*

1 234 h Digit entry not

terminated.

1 bspI 123 h Clears only the last digit.

i 1 231 h

I
ENTER

|

1 231 h Terminates digit entry.

|bspJ u un Clears all digits to zero.

12 12 h

I g IIclxI h Clears display whether

or not digit entry has

been terminated.

In Program mode:

• |CLx| is programmable: it is stored as a programmed
instruction, and will not delete the currently displayed

instruction.

•
| BSP

|

is not programmable. It is used instead to delete program

instructions.

One-Number Functions

A one-number function performs an operation using only the

number in the display (X-register). To use any one-number

function, press the function key after the number has been placed

in the display.

Keystrokes Display

h

FFFF h

Two-Number Functions and |ENTER|

A two-number function must have two numbers present in the

calculator before executing the function. *}, 0, B. and [*} are

examples of two-number functions.

•The calculator should display 2-16-0000 when ffl [STATUS I
is pressed. If it does not,

refer to page 37.

Section 1: Getting Started 19

Terminating Digit Entry. When keying in two numbers to
perform an operation, the calculator needs a signal that digit entry
hasbeen terminated for the first number. This is done by pressing
LlNTERJ to separate the two numbers. If, however, one of the
numbers is already in the calculator as the result of a previous
operation, you do not need to use the |~ENTER~l key. All functions
except the digit entry keys themselves have the effect of
terminating digit entry*

Chain Calculations. Long calculations do not require the use of
parentheses.

I
ENTER

|
is used to separate two numbers sequentially

keyed into the stack.

Example: Calculate (6 + 7) X (9 - 3) in base 10.

Keystrokes

DEC

6 |
ENTER

I

70

9 | ENTER

3H

Display

6

13

s 78 d

Decimal mode. Display
shows last result.

Digit entry terminated.

The number 13 is stored
as an intermediate

result.

Six is also stored as an
intermediate result.

(13 X 6) = 78.

Continuous Memory
What Is Retained

The Continuous Memory feature of the HP-16C retains the
following information, even while the calculator is off:

• Number base or operating mode (Hexadecimal, Decimal,
Octal, Binary, or Floating-Point Decimal).

• Arithmetic mode (l's Complement, 2's Complement,
Unsigned).

• Word size.

•The digit entry keys arethe digit keys and [HE] . Also-in Floating-Point Decimal modeonly— U-LfEXJ, and [CHSj.

20 Section 1 : Getting Started

• All stored numbers.

• All stored programs.

• Position of the calculator in program memory.

• Any pending subroutine returns.

• Flag settings.

• Scrolling of the display.

• Type of digit separators.

When the calculator is turned on, it always "wakes up" in Run (not

Program) mode.

Continuous Memory can be preserved for a short period while the

batteries are removed. (The calculator must be off.) Refer to

appendix C for instructions on changing batteries.

Resetting Continuous Memory

To reset (entirely clear) Continuous Memory:*

1. Turn the calculator off.

2. Press and hold |
ON

| , then press and hold .

3. Release
I
ON

| , then (Steps 2 and 3 are represented in this

manual as |ON| /F1.)

Error Display. When Continuous Memory is reset, Pr Error

(power error) is displayed. Press any one key to clear the display.

Appendix A contains a list of error messages and the conditions

that cause them.

Default Conditions. When the calculator is initially turned on or

Continuous Memory is reset, the following conditions are set by

default:

• Number base: Hexadecimal (Integer mode).

• 2's Complement mode.

• Word size: 16 bits.

• All flags cleared.

• Program memory and all registers cleared.

'If the calculator is dropped or otherwise mishandled, Continuous Memory may be

reset.

Section 2

The Automatic Memory Stack

The Memory Stack and Stack Manipulation
The HP-16C uses Reverse Polish Notation (RPN) to solve

complicated calculations without parentheses and with a mini-

mum of keystrokes. Using the memory stack and the
I
ENTER

|
key,

the calculator automatically retains and returns intermediate

results. This section discusses the operation of the calculator stack,

which is fundamental to the use of the HP-16C in all modes,
including programming.

The Automatic Stack Registers

T h

Z h

Y h

X h Always displayed.

LAST X h

The number that appears in the display is the number in the X-

register—unless the calculator is in Program mode (PRGM
annunciator displayed).

Numbers in the stack are stored on a last-in, first-out basis. The
three stacks drawn below illustrate the three types of stack

movement. Assume that x, y, z, and t represent any numbers which
may be in the stack, and that the calculator is in Binary mode.

21

22 Section 2: The Automatic Memory Stack

Stack Lift No Stack Lift or Drop
lost

T t z T t t

Z z V Z z z

Y V X Y y y

X X 1 b X 1 b 10 b

Keys'

T

Z

Y

X

Keys'

EtlD
(shift left)

Stack Drop

t

z

t

t

1 b

1 b

z

10 b

Typically, one-number functions (as defined in the previous

section) result in no stack movement, while two-number functions

usually result in a stack drop.

Notice the number in the T-register is regenerated when the stack
drops, allowing this number to be used repetitively as an automatic
constant.

Stack Manipulation Functions

Pressing
[
ENTER

|
separates two numbers keyed in one after the

other. It does so by lifting the stack and copying the number in the

display (X-register) into the Y-register. The number entered next
then writes over the value in the X-register; there is no stack lift.

The example below shows what happens as the stack is filled with
the hexadecimal numbers 1, 2, 3, 4. (The shading indicates that the

contents of that register will be written over when the next number
is keyed in or recalled.)

Section 2: The Automatic Memory Stack 23

'°St
jT lost

t z z y

z V y 1 h

y 1 h 1 h 2 h

1 h 1 h 2 h 2 h

Keys*
I

ENTER
| 2

| ENTER
|

lost

Keys

In addition to

T V — K 1 h 1 h

Z 1 h 1 h 2 h 2 h

Y 2 h 2 h 3 h 3 h

X 2 h r 3 h 3 h r 4 h

ENTER

I
ENTER

I , there are three other functions that
rearrange the stack:

• |R+ \(roll down) rolls the contents of the stack registers down
one register. The number in the X-register rolls around into the
T-register.

• US (roll up) rolls the stack contents up one register. The
T-register contents roll around into the X-register.

• \xiy\ (X exchange Y) exchanges the numbers in the X- and
Y-registers.

The LAST X Register

The LASTX register, another memory register, preserves the
number that was last in the display before execution of a numeric
operation.* Pressing QT] |LSTx| (LASTX) places a copy of the
contents of the LAST X register into the display (X-register).

•For a complete list of operations which save x in the LASTX register, refer to
appendix B.

24 Section 2: The Automatic Memory Stack

The |
LSTx

|
feature allows you to reuse a constant value without

re-entering it (as shown under Calculations with Constants, page

26). It can also assist you in error correction by recovering the

number that was in the calculator before the last numeric

operation.

For example, suppose you mistakenly entered the wrong addend

(10 instead of 11) in a chain calculation:

Keystrokes

1010 [ENTER!

100

as

11 H

Display

1010
1100

10 b

1010 b

Binary mode. Display

shows the last result.

Oops! The wrong
number was keyed in.

Retrieves from LAST X
the last entry to the

X-register (the incorrect

addend) before {*} was
executed.

Reverses the function

that produced the wrong

1101 b The correct answer.

Numeric Functions and the Stack

Stack Movement

When you want to key in two numbers, one after the other, you

must press [ENTER
|
between entries of the numbers. However, when

you want to key in a number immediately following any function

(including stack manipulations such as I I), you do not need to

use I
ENTER

I . Executing most HP-16C functions has this additional

effect:

• The automatic memory stack is \ift-enabled; that is, the stack

will lift automatically when the next number is keyed in or

recalled from storage into the display.

• Digit entry is terminated, so the next number starts a new

entry.

Section 2: The Automatic Memory Stack 25

There are two functions,
I
ENTER

|
and ICLcl . that disable stack lift-

that is, they do not provide for the lifting of the stack when the next
number is keyed in or recalled.* Following the execution of either of
these functions, a new number will simply write over the currently

displayed number instead of causing the stack to lift. (Although
the stack lifts when

|
ENTER

-
] is pressed, it will not lift when the next

number is keyed in or recalled.)

T 1 h 1 h 1 h

Z 2 h 2 h 2 h

Y 3 h 3 h 3 h

X 4 h h A h

Keys* g||CLx A

LAST X

'

1 h

1 h

2 h

d h

»

As you can see, when an arithmetic operation is performed with
operands (A6 and 3 16) in the X- and Y-registers, the stack drops and
the result (D 16) is left in the X-register.

For a complete listing of how functions affect stack lift (enabling,
disabling, and neutral) and digit entry, refer to appendix B.

Nested Calculations

The automatic stack lift and drop make it possible to do nested
calculations without using parentheses. Intermediate results are
automatically saved in the stack and used as needed. A nested
calculation is solved simply as a series of one- and two-number
operations. If you begin your calculation at the innermost number
or pair of parentheses and work outward (as you would when
working with pencil and paper), you will rarely need to store
intermediate results in a storage register.

|BSP| will also disable stack lift and clear the display (just as ICLxl does) if digit entry has
been terminated. Otherwise, it is neutral to stack lift—that is, it neither enables nor
disables stack lift.

26 Section 2: The Automatic Memory Stack

For example, consider the (integer decimal) calculation

3(4 + 6(6 + 7)].

Keystrokes Display

|
DEC] Display shows last

result.

6 1 ENTER
1

7 13 d Intermediate result.

5[x] 65 d Intermediate result.

4[+) 69 d Intermediate result.

3[x] 207 d Final result.

This example shows that the stack automatically drops after each

two-number calculation and lifts when a new number is

subsequently keyed in.

Calculations With Constants

There are two ways (without using a storage register) to perform

repeated calculations with a constant:

• Use the LAST X register.

• Load the stack with the constant prior to doing the

computations.

Example: Remove the upper four bits and preserve the lower four

bits from the following 8-bit binary numbers: 10001001, 10101111,

and 11110101. The constant value 1111 will be used as a mask.

Using the LAST X Register. Make sure to calculate with the

constant in the X-register (rather than the Y-register) so that it will

always be saved in the LAST X register. Retrieve the constant by

pressing QT) I
LSTx

I
.

Keystrokes

[BIN I

10001001 I
ENTER

]

1111

m |~AND~l

Display

10001001

1111

1001

Binary mode. Display

shows previous rsult.

b First number.

b The mask (the constant).

b Lower four bits.

Section 2: The Automatic Memory Stack 27

Keystrokes

10101111

9 LSTx

m i
AND

|

11 1101 01 rgl fLsT^I

m iANDl

Display

10101111 b

1111 b

1111 b

1111 b

101 b

Second number.

Retrieves the constant.

Lower four bits.

Lower four bits.

Using the Stack. Load the stack with a constant by keying it in

and pressing
I
ENTER

|
three times. After each operation (here: |AND|),

the stack drops (making the constant available in the Y-register)

and the constant value is regenerated in the T-register. By using

I
BSP| or

|
CLx| to disable the stack, the new, variable numbers

entered will "write over" the previous result, thus preserving only
the constant in the stack.

Keystrokes

1111 ENTER!

ENTER ENTER

10001001 mfANDl

fBSPl

10101111 mfANDl

fBSPl

111 10101 m iANDl

Display

1111 b The mask (the constant).

1111 b Fills the stack with 1111.

1001 b Lower four bits of first

number.

b Stack lift disabled.

1111 b Lower four bits of second
number.

b Stack lift disabled.

101 b Lower four bits of third

number.

Section 3

Number and Display Control

Number representation in the HP-16C is much more versatile than

in other calculators. This section will discuss the different aspects

of integer number use and display: number bases, word size,

complements, number ranges, and the resulting displays.

(Floating-point format is described in section 5, Floating-Point

Numbers.) The formats you specify are preserved by Continuous

Memory.

Integer Mode
The number base modes (I

HEX
I . I

DEC
I
. I
OCT

I , and Q3IN]) operate

strictly in Integer mode (that is, using integers only). Fractional

decimal numbers can be used in Floating-Point Decimal mode,

described in section 5. Pressing any of the four number base keys

establishes Integer mode.

Number Base Modes

There are four number base modes used by the HP-16C in Integer

mode for purposes of display and digit entry: Hexadecimal (base

16), Decimal (base 10), Octal (base 8), and Binary (base 2). An h, d,

o, or b to the right of the eight-digit display indicates the present

number base mode. The calculator defaults to Hexadecimal mode

when first turned on or when Continuous Memory is reset.

Pressing |~HEX"1 , [decI , lOCTl , or 1 BIN

|

converts the display to that

number base in a right-justified, integer format. Digit keys pressed

are interpreted accordingly: the calculator will not respond if

you attempt to enter an inappropriate digit (such as a "3" in

Binary mode). In addition to the digit keys [o] to |T|, Hexadecimal

mode uses the keys [AltofFl. appearing in the display as A, b, C, d,

E,andF.

28

Section 3: Number and Display Control 29

Note: Regardless of the current number base mode, the

internal representation of numbers is always binary.

Switching between number modes changes the display only,

not the calculator's internal representation of the value.*

Temporary Display ("SHOW")

To temporarily view the displayed value in another base, press (7)

SHOW {
[HEXl

,
[DECl

, focTI ,
(W) } . The converted form of the number

will be shown as long as you hold down the number base key.

Keystrokes Display

[hex] F F h

FbTnI 1111 b

SHOW [OCT] (hold) 17 o
(release) 1111 b

Complement Modes and Unsigned Mode
The HP-16C provides three conventions for representing numbers:
1 's Complement mode, 2's Complement mode, and Unsigned mode.
The 2's Complement mode is the default mode when the calculator

is first turned on or after Continuous Memory is reset. Once a mode
is set, it remains in effect until you change it or until Continuous
Memory is reset. (All examples in this handbook use 2's

Complement unless otherwise indicated.)

In the binary representation of a signed number, the leftmost or

most significant bit with respect to word size serves as the sign bit:

for plus and 1 for minus. In Decimal mode, a negative number is

displayed with a minus sign.

•The keystroke sequence on page 35 shows how number base mode, word size, and
complement mode affect the display without affecting the calculator's internal binary
representation of a number in Integer mode.

30 Section 3: Number and Display Control

1 s Complement Mode

Pressing Q] SET COMPL 1 1 s
|
will set l's Complement mode. When

you press
I
CHS

I
(change sign) in l's Complement mode, the l's

complement of the number in the X-register is formed by

complementing all bits.

One's Complement accommodates an equal number of positive and
negative numbers, but has two representations for zero: and -0.

2's Complement Mode

Pressing [fj SET COMPL |2'sl will set 2's Complement mode. The
I
CHS

|
function will take the 2's complement of the number in the

display (that is, it complements all the bits in the X-register and

adds 1).

In 2's Complement there is just one representation for zero, but

there is always one more negative number than positive number
represented.

Unsigned Mode

Pressing [fj SET COMPL |UNSGN| will set Unsigned mode, which

uses no sign bit. The most significant bit adds magnitude, not sign,

so the largest value respresented by an 8-bit word is 255^ instead

of 127 10 .

Changing signs in Unsigned mode has no meaning. If you press

|CHS| in Unsigned mode, the result will be the 2's complement of the

number in the X-register. Flag 5 (signified by the G annunciator) is

set as a reminder that the true result is a negative number, which is

outside the range of Unsigned mode.

The following table summarizes how the complement modes affect

the decimal interpretation of all possible 4-bit patterns (word

size 4).

Section 3: Number and Display Control 31

Decimal Interpretation of 4-Bit Binary

Binary
1 's Comnlpmpnt

Mode
PnmnlflmAnt

Mode
1 1 ncinnoHkj noiy lieu

Mode

01 1

1

7 7 7

01 10 6 6 g

0101 5 5 K

0100 4 4 4

001

1

3 3 3

0010 2 2 2

0001 1 1 1

0000 o o n

1111 -0 _1 1 R

1 110 -1 _2 14

1 101 -2 _3 1 3

1 100 -3 -4 12

1011 -4 -5 1

1

1010 -5 -6 10

1001 -6 -7 9

1000 -7 -8 8

Word Size and Window Display
The HP-16C will work with words (data units) up to 64 bits long.

The default word size when you first turn on the calculator or reset

Continuous Memory is 16 bits. The display window shows eight

digits at a time; leading zeros are not displayed.* A period is placed

on the left and/or right side of the h, d, o, or b to indicate the
presence of more, undisplayed digits to the left or right of the

currently displayed portion of a number.

Setting flag 3, as explained later in this section (page 36), will cause all leading zeros to

be included in the display.

32 Section 3: Number and Display Control

Word Size

To specify a word size, first place the desired word size (1 10 to 64 10)

in the X-register, then press |7| I WSIZEl . The absolute value of the

number is used; a zero is interpreted as 64. After I WSIZE l
is executed

the stack drops.

A current word size smaller than 8 will limit the size of the number
you can enter to stipulate a new word size; but you can always

enter 0|T|
|
WSIZE] to set a word size of 64. (You can then set any word

size.) Error 2 results if you attempt to specify a word size larger

than 64.*

Keystrokes

[DEC] 16 HI 1 WSIZE
|

|7] SET COMPLlTTI

32767 ENTER

8 |"f]
I
WSIZE]

i6rn fwsizEi

Display

32767 d

-1 d

255 d

Base 10; word size 16.

Sets 2's Compl. mode.

Largest positive 2's

complement number
with a word size of 16.

Number changes from

01111111 11111111 2 (16

bits) to 11111 11

1

2 (eight

bits).

Number changes from

llllllll2 to

00000000 11111111 2 .

Note: A change in word size might not preserve numerically

equivalent values stored in the memory stack. Going to a

smaller word size will truncate a word, leaving the least

significant bits. Going to a larger word size will not preserve

the sign bit of a negative number. If the original word size is

restored, the original stack contents are not restored. (The

effect on storage registers is different and is discussed on
page 67.)

"It is possible (in l's or 2's Complement mode) to obtain a negative number if you try

entering a number larger than the largest positive number that can be represented

within the current word size. This occurs when the most significant bit (the sign bit)

becomes 1 (negative), as shown at the end of the keystroke sequence on page 36.

If the word size is 3 or less, attempting to initially enter a digit that is legal in the current

number base mode but is too large for the given word size will result in the entry of a

zero.

Section 3: Number and Display Control 33

Windows

The display can be considered a window showing up to eight digits

of the number in the X-register. The X-register—like all registers-

can hold up to 64 binary digits, depending on the word size. What
you normally see is window 0, the eight least significant digits of

the number in the X-register. As you key in more than eight digits,

the most significant digits move off the left end of the display and
into window 1.

Pressing \T\
|
WINDOWl {0 to 7| will display different eight-digit

portions of the word in the X-register. The display returns to

window 0, the eight least significant digits of the word, with each
new entry into the X-register. The highest window number is 7

since the maximum word size is 64. (With smaller word sizes or

smaller numbers, the higher windows will be blank.) Error 1 results

ifyou specify a window number greater than 7.

Example: The 16-digit hexadecimal value FF00 FF00 FF00 FF00
has a 64-digit binary representation (eight l's alternating with
eight O's). In Binary mode, you can view the entire number by
executing |T|

|
WINDOW] through [T|

| WINDOW 1 7.

X

Window

11111111 00000000 1111111

-7 6

most significant —
(default)

least significant

Scrolling

Scrolling with the (<] and [>] keys allows you to move different

parts of a number into the display, one digit at a time. This does not
change the number itself, only what part of the number you see.

The location of the period tells you where to look for the rest of the
number in the X-register. For instance, if the period is on the left of
the base indicator (.b), then there are more digits to the left of the
current display. Pressing [T][>] will scroll the number to the right.

34 Section 3: Number and Display Control

bringing these "hidden" digits into view. A period can appear both

on the left and right sides of the base indicator if the current

window is not at one end of the number.

Example: The following scrolling and
I
WINDOW 1 functions can be

used to view the entire X-register contents. The word size used is 16

bits.

Keystrokes

[BIN]

11111111
I
ENTER

|

10

Ul l
WINDOW

|
1

rfl lWINDOW|

Display

11111111 b

00000000 b

10000000 b.

1 b.

00000000 .b

Sets Binary mode.

Display filled (eight

digits).

Period on left side, so

number continues to the-

left.

Scrolls number one digit

to right (period shows
number now continues to

the right).

The contents of window
1: the most significant

digit.

Window 0: the least

significant digits.

Scrolling is "reset"—that is, the display is reset to window 0—when
a bit manipulation or mathematical function is executed. A
complete list of functions that do not reset the display to window
is included in appendix B.

Section 3: Number and Display Control 35

The Display and Internal Representation

The following keystrokes illustrate how various functions (number
base, word size, complement mode) alter the calculator's display in

relation to the internal binary representation.

Keystrokes Display

HEX

8f?1 |WSIZE|

|BSP|

62

I
OCT

|

i
BIN

"

[DEC
1

62

[OCT]

62

[hex]

ffl SET COMPL [ITl

CHS

I

OCT
|

fBINl

I DEC I

rflSETCOMPLpril

62

142

1100010

98

62

76

62

32

32

CE

316 o

11001110 b

-50 d

-49 d

(TjSET COMPL lTJNSGNl

mSETCOMPLrrsI
206 d

-49 d

Internal Binary
Representation

CHS

h 00000000

h 01100010

o 01100010

b 01100010

d 01100010

d 00111110

o 00111110

o 00110010

h 00110010

h 00110010

h 11001110 Negative

number in 2's Compl.,

word size 8.

11001110

11001110

11001110

11001110 Internal

representation does not

change.

11001110

11001110 In l's Compl.
this is interpreted as a

negative number.

49 d 00110001

36 Section 3: Number and Display Control

Internal Binary
Keystrokes Display Representation

RISETCOMPL IUNSGNl

2 d 00000010

25 d 00011001

-001 d 11111110 (Corresponds

to -1 io in l's Compl.
Zeros are placeholders

for purposes of digit

entry correction.)

254 d 11111110

Flags

The HP-16C has three user flags (0, 1, and 2), which can be used to

control program execution, and three system flags (3, 4, and 5),

which are used to indicate system status.

The use of flags in programming is discussed in section 9, Program
Branching and Controls.

Flags 3, 4, and 5 are simply status indicators and have no effect on
calculator operation (unless you choose to use them to control

program execution):

• Flag 3 controls the display of leading zeros. When it is set,

zeros to the left of the highest nonzero digit are displayed.

When it is clear (the default condition), the display of leading

zeros is suppressed. (Note that leading zeros are always
suppressed in Decimal and Floating-Point Decimal modes.)

• Flag 4 is set (and the C annunciator appears) when a carry

has occurred.

• Flag 5 is set (and the G annunciator appears) when the

returned value is out-of-range (Greater than the largest

representable number or not representable in the current

mode).

Section 4 includes a discussion of how the carry condition and
out-of-range condition are generated.

Section 3: Number and Display Control 37

All flags can be set, cleared, and tested as follows:*

• QT][SF]a? will set flag number n (0 to 5);

• (Til CF \
n will clear flag number n: and

• [T)[F?] /7 will check if flag n is set.

A flag's status and associated annunciator, if any, are retained

until changed by:

• Resetting Continuous Memory.

• Executing a function which affects that flag (flags 4 and 5

only).

• Clearing the flag with |CF| or setting it with |SF| .

In programming, flags are generally used to record the result of a
test for future use. Section 9 describes the use of flags in conditional

branching.

Machine Status (| STATUS
Pressing \T\

|
STATUS

|
will temporarily show (1) the current

complement mode, (2) the current word size, and (3) which flags are

set other than flags 4 and 5 (which display annunciators C and G
when set). The display remains as long as you hold down the

|
STATUS

|
key. To alter machine status, refer to page 30 (complement

modes), page 32 (word size), or page 36 (flags).

Initial
|
STATUS

|
Display t

2-16-0000

} ^- Flag Indicators (3, 2, 1 , 0)

- Word Size (base 10)

•Press the decimal representation for the flag number. Note that the flag number does
not enter the stack.

tWhen the calculator is first turned on or after Continuous Memory is reset.

38 Section 3: Number and Display Control

Complement Status. The Complement mode is (Unsigned), 1

(l's), or 2 (2*s).

Flag Status. The display portion for flag status shows four places

held by zeros or ones. The flags are numbered from the right from

zero to three; a place occupied by 1 represents a set flag. For

example, consider the following flag portions of
|
STATUS] displays:

H3210 » 3 2 1

-0100 Flag 2 set. -1101 Flags 0, 2, and 3 set.

Special Displays

Annunciators

The HP-16C display contains six annunciators that indicate the

status of the calculator for various operations. The meaning and
use of these annunciators are discussed on the following pages:

* Low-power indication, page 38.

f and g Prefixes for alternate functions, page 17.

C Flag 4 (carry) set, page 39.

G Flag 5 (out-of-range) set, page 40.

PRGM Program mode, page 72.

Error Display

If you attempt an improper operation—such as specifying a word
size larger than 64—an error message will appear. For a complete

listing of error messages and their causes, refer to appendix A.

To clear the Error display and restore the calculator to its prior

condition, press any key. You can then resume normal operation.

Low-Power Indication

A flashing asterisk in the lower left-hand corner of the display

indicates low battery power. At this point, however, you still have
operating time remaining: at least 15 minutes if you run a program
continuously, or at least an hour if you do calculations manually.

(Certain batteries provide more time.) Refer to appendix C (page

102) for information on replacing the batteries.

Section 4

Arithmetic and Bit

Manipulation Functions

Integer arithmetic operations and bit manipulation functions can
only be performed in Integer mode. Since these functions are

subject to carry and out-of-range conditions, an explanation of

these conditions precedes the discussion of the functions

themselves.*

Floating-point decimal arithmetic and other capabilities of

Floating-Point Decimal mode are discussed in section 5, Floating-

Point Numbers.

Carry and Out-of-Range Conditions

The execution of certain arithmetic and bit manipulation

operations can result in a carry and/or an out-of-range condition.

These conditions set flags (that may be tested) and display

annunciators (for visual indication). The definitions for "carry"

and "out-of-range" depend on the particular function executed.

Section 3, under Flags (page 36), explains how to manually set and
clear these (and other) flags.

Flag 4: Carry (C)

The shifting, rotating, and arithmetic operations listed below will

set or clear flag 4 and the C annunciator whenever they are

performed in Integer mode. Flag 4, the carry flag, is set if the carry

bit is 1, and cleared if the carry bit is 0.

dD fRLnl {*} (carry)

da fRLCl |RLCn| Q (borrow)

|ASR| [11] I
RRn

[

{*} (remainder 0)

|

RRC
|

|RRCn|
I
DBL-j-

]
(remainder ¥= 0)

\4x
| (remainder ¥= 0)

(These functions are described later in this section.)

* Appendix A includes a table of the relevant functions and how they affect the carry and
out-of-range flags.

39

40 Section 4: Arithmetic and Bit Manipulation Functions

Example: The following simple additions set and then clear the

carry flag (4).

Keystrokes

[HEXl FFFF ENTER

10

10

Display (1
STATUS

|
: 2-16-0000)*

FFFF h Hex mode.

Oh C annunciator: carry

occurred and flag 4 set.

1 h Carry flag cleared

because no carry

occurred.

Flag 5: Out-of-Range (G)

Flag 5 and the G annunciator are set if the correct result of an
operation cannot be represented in the current word size and
complement mode. For the [+] and operations, this corresponds

to the "overflow" condition on most computers.

The functions below either set or clear flag 5 and the G annunciator

whenever they are performed in Integer mode:

B S [abs] [CHS]

I
DBLX

1

1
|
DBL+

1

1

In addition, the arithmetic operators H, 0, H. and will affect

flag 5 in Floating-Point Decimal mode. The
I
FLOAT

|
function also

affects flag 5. Refer to section 5 for details.

When a result is out-of-range, the lower bits (as many as fit in the

given word size) of the full answer will be returned. If the operation

was or in 1 's or 2's Complement mode, the most significant bit

(sign bit) returned will match the sign bit of the full answer.

* Throughout this manual, this status display is used to indicate what the machine status

(as explained on page 37) must be for the examples to work as shown.

t Always clears flag 5.

Section 4: Arithmetic and Bit Manipulation Functions 41

Keystrokes Display (I
STATUS

1 : 2-16-0000)

32767 dI
DEC [32767 [ENTER

20

(T)[CF]5

32766 d G annunciator displayed

and flag 5 set; overflow.

Leading binary digit is

zero; number is positive.

32766 d Clears flag 5.

Flag 5 can also be set in the course of a running program; this will
not halt program execution.

Arithmetic Functions

Addition, Subtraction, Multiplication, and Division

The arithmetic operations H. B, and can be performed
using integers in any of the four number bases. The operands,
which can be entered in different bases, must be in the Y- and
X-registers. After the operation is performed, the stack drops and
the result is placed in the X-register.

In Integer mode, performs an integer division. The fractional
part of the quotient is truncated.

All the arithmetic operators except will set or clear flag 4 and
flag 5 whenever executed. affects flag 5 only.

Example: Find (5A016) h- (1777648).

Keystrokes

HEX 5AO ENTERl

[OCTl 177764

S

Display

5A0
1 77764

HEX

177610 o

FF88 h

(I
STATUS

I : 2-16-0000)

Enters first number.

Changes to Octal; keys
in second number.

Result in base 8. Since a

carry was not generated,

the result is exact.

Converts to base 16.

Addition and Subtraction in l's Complement Mode. In 2's
Complement and Unsigned modes, the result of an addition or
subtraction is simply the sum or difference of the two bit patterns
in the X- and Y-registers. In l's Complement mode, however, the

42 Section 4: Arithmetic and Bit Manipulation Functions

result of an addition is affected by the occurrence of a carry, and
the result of a subtraction is affected by the occurrence of a borrow.

If a carry out of the most significant bit occurs, 1 is added to the

result. If a borrow into the most significant bit occurs, 1 is

subtracted from the result. Both cases set flag 4.

Carry

-/

±tl2
-2,o

ill

1110
+1110

1100

+ 1

1101,

-3
+ 3

(I STATUS | ; 1-04-1000)

No Carry

1100
+0011

-o, 1111.

Borrow

3
-4
-/

io

£611
-0100

1111

i_

1110,

No Borrow

-5

IO

01%
-0101

0001,

The Carry Flag During Addition. The carry flag (flag 4, C
annunciator) will be set whenever a binary addition results in a

carry "out of the most significant bit. If an addition does not

result in such a carry, the carry flag is cleared. This is the same for

all complement modes.

Carry Set

+(-4)

<Z> IO

'1010

+1100

0110,

(incorrect, so out-of-range

flag set also)

G
+ I

(I
STATUS

I : 2-04-1000)

Carry Cleared

0110
+0001

7,< 0111

Section 4: Arithmetic and Bit Manipulation Functions 43

The Carry Flag During Subtraction. The carry flag (flag 4, C
annunciator) will be set whenever a binary subtraction results in a
borrow into the most significant bit. Otherwise, the carry flag is

cleared. This is the same for all complement modes. (Note that
subtraction in the HP-16C is not computed as the addition of a
negative number; this affects how carry generation occurs.)

(I
STATUS

|

: 2-04-1000)

Carry Set Carry Cleared
O, O,

-« ;roio Co 01 ro
-C-4) -1100 -/ -0001

~2io 1 1 102 5/0 0101-

The Out-of-Range Flag. Arithmetic results that cannot be
shown in the current word size and complement mode set the out-

of-range flag. For (Tj, this occurs only in 2's Complement mode
when the largest possible negative number is divided by —1.

Example: With a word size of 4 bits, calculate (7 + 6) in base 2 and
observe the effect on flags 4 and 5.

Keystrokes Display (|
STATUS

1
: 2-04-0000)

1
BIN

I Binary mode.

1 1 1 I
ENTER

| 111b 7.

110 110 b 6.

1101 b -3. Flag 5 (out-of-range)

set; flag 4 (carry) cleared.

Remainder After Division and I RMD

I

In division, only the integer portion of the result is returned to the
X-register. If the remainder is not zero, flag 4 (carry) and the C
annunciator are set. If the remainder is zero, flag 4 is cleared.

To obtain the remainder instead of the quotient, press Q] | RMD
|

instead of Q. This calculates |y| MOD |x|. The sign of the result

matches the sign of the dividend (that is, the sign of y).

44 Section 4: Arithmetic and Bit Manipulation Functions

Keystrokes Display (I
STATUS

|

: 2-16-0000)

Hexadecimal mode.

C annunciator; flag 4 set.

66/7 leaves a remainder.

No annunciator; flag 4

cleared. E/2 leaves no
remainder.

Remainder of 7/4.

[HEX] 66 [ENTER]

70
66 h

E h

2H 7 h

4|T1 |RMD 3 h

Square Root

The 1 V* |
function calculates the square root of the number in the

X-register. The fractional part of the square root is truncated. If

this fraction is not zero, flag 4 (carry) is set; otherwise, flag 4 is

cleared.

Negative Numbers and Complementing

Changing Signs. The
I
CHS

I
function (change sign) will change

the sign, forming the complement (l's or 2's) of the number in the

X-register. If the X-register holds the largest possible negative

number in 2's Complement mode, the only effect of pressing | CHS
1

will be to set flag 5 (out-of-range).

In Unsigned mode,
I
CHS

|
forms a 2's complement and sets flag 5 (G

annunciator) as a reminder that a negative number is outside the

range of Unsigned mode.

To key in a negative number, press
I
CHS

|
after its digits have been

keyed in.
I
CHS

1
terminates digit entry in Integer mode.

Absolute Value. Pressing [jf] I ABS

I

converts the number in the

X-register to its absolute value, forming the l's or 2's complement
of a negative number. There is no change if the calculator is in

Unsigned mode or if the number is positive.

If the X-register holds the largest possible negative number in 2's

Complement mode, the only effect of
I
ABS| will be to set flag 5

(out-of-range).

Logical Operations
The logical (Boolean) operations NOT, OR, AND, and EXCLU-
SIVE OR return the results of a bit-by-bit analysis of a binary

number. The functions
I
OR L I

AND| , and |XOR
|
operate on the bits in

Section 4: Arithmetic and Bit Manipulation Functions 45

corresponding positions of the words in the X- and Y-registers; the
stack then drops and the result is placed in the X-register. The
operator

I
NOT| acts only upon the word in the X-register; the stack

does not drop.

NOT
The [NOT] function inverts the values of all hits in the binary
number in the X-register . It is equivalent to forming the l's

complement, that is, using
I
CHS

I
in l's Complement mode. Only the

X-register is affected.

Keystrokes

rBTNlimim

fil l
WINDOW

1
1

Display

11111111 b

00000000. b

11111111 b.

(I
STATUS

|
: 2-16-1000)

Binary mode,

l's complement of

00000000 llllllll 2 is

11111111 000000002 .

AND
The

I
AND

|
function (the logical product) compares each corre-

sponding bit in two words. Each resulting bit is 1 only if both
corresponding operand bits are 1 ;

otherwise, it is 0.

The use of
|
AND

l
is illustrated under Masking, page 51.

OR

The
I
OR

I
function (the logical sum) compares each corresponding

bit in two words. Each resulting bit is only if both operand bits

are O's.

Example: Perform a logical OR to determine which bits are zero
in both 10101 2 and 10011 2 .

Keystrokes

10101 [ENTER
I

1001 1

Display

10101
10011
10111

(I
STATUS] : 2-1 6-0000)

Bit 3 (represented by the

zero) and all bits to the

left of bit 4 are zero in

both of the given words.

46 Section 4: Arithmetic and Bit Manipulation Functions

EXCLUSIVE OR
The IXORj function (the logical difference) compares the corre-

sponding bits in two words and yields a 1 only if two corresponding
bits are different.

Example: Use the |XOR| function to determine if two binary
quantities (01010101 2 and 0101 1101 2) are the same. A 1 in the result

signifies that the two quantities are different at those bit

position(s).

Keystrokes

1010101
I

ENTER

|

1 01110 1

mrxpRi

Display

1010101
1011101

1000 b

(I
STATUS

I : 2-1 6-0000)

The two numbers differ

in the fourth bit from the

right.

Shifting and Rotating Bits

Shifting and rotating operations cause the bits of a word to be
moved left or right. The fate of the bit moved off the end of the
word, and the value of the bit entering the vacated position, depend
upon the type of shift or rotate performed.

Flag 4 (carry) is set or cleared by any shift or rotate function,

except \TJ\(left-justify), as shown in the diagrams below.

Shifting Bits

The HP-16C can perform two types of shifts on the contents of the
X-register: a logical shift or an arithmetic shift. The latter

preserves the sign bit. The HP-16C can also left-justify the contents
of the X-register.

Logical Shifts. Pressing Q] [sl] (shift left) or Q] [sr] (shift right)

moves all the bits of the word in the X-register one bit to the left or
right. Bits shifted out of the word are shifted into the carry bit, and
the previous state of the carry bit is lost. The new bits generated at

the opposite end of the word are always zeros.

[SL]

Carry X-Register

C

Section 4: Arithmetic and Bit Manipulation Functions 47

Left-Justify. To left-justify a bit pattern within its word size,

press QDO- The stack will lift, placing the left-justified word in

the Y-register and the count (number of bit-shifts necessary to left-

justify the word) in the X-register. The carry flag is not affected by
O-
Example: Left-justify the binary value 1111 in a word size of
eight.

Keystrokes Display (| STATUS
j : 2-08-0000)

1111 1111 b

DDES 100 b The count: four bit-shifts

to left-justify the word.

{EE 11110000 b Left-justified word.

Arithmetic Shift Right. Pressing [J] |ASR| (arithmetic shift

right) will move the contents of the word in the X-register one bit to

the right, as does I SRI . However, instead of placing a zero into the
new place at the left of the word, the sign bit is regenerated. (In

Unsigned mode, which has no sign bit, |ASR| operates like |SR| .)

The carry bit is set if a 1 is shifted out of the X-register and cleared
ifOis shifted out.

ASR iy

—

wSign Bign Bit Unchanged
C

Example: Shifting a positive binary number to the right n places
is equivalent to dividing it by 2". Since it regenerates the sign bit,

an arithmetic shift also can be used to divide an even negative
integer by 2.* Divide 01111111 (word size 8) by 2

;!

, then divide
10000000 by 2;i

.

Keystrokes Display (| STATUS! : 2-08-0000)

GO [IE) 3 Allows display of

leading zeros.

1111111 01111111 b

•For odd negative integers in 2's Complement mode, |ASr1 gives a result one less than
division by 2.

48 Section 4: Arithmetic and Bit Manipulation Functions

Keystrokes

[7]SHOW [DEC]

Edl] 0[SR] ECsr]

Display

127 d

00001111 b

(I STATUS I : 2-08-0000)

(I
ENTER

|
is not needed

because this function

terminates digit entry.)

Each shift performs an
integer divide by 2 and
sets flag 4 because a 1 is

shifted into the carry bit.

mSHOW rDECl (hold)

(release)

10000000
ITISHOW rDECl

rgirASRi rgirASRi

GD[ASR]

15
00001111
1 0000000

-128
11100000
11110000 Sign bit is regenerated

and carry flag is cleared

with each shift.

-16 d

11110000 b

SHOW [DEC]

(release)

Rotating Bits

There are three general types of rotate functions on the HP-16C,
encompassing eight different functions.

• Rotate left and right
([RL] ,

[rr]).

• Rotate left and right "through the carry bit" (I
RLC

I , [RRCl).

• Rotate n places (| RLn |, |
RRn

| , [RLCn | , fRRCn]).

Rotation. Pressing Q] [rl] (rotate left) or \T\ [rr] (rotate right)

causes the contents of the X-register to rotate (or "circularly shift")

one bit to the left or right. Bits shifted out of the word re-enter it at
the other end. The carry flag is set if a 1 bit is rotated around the
end, and is cleared if a zero is rotated around the end.

m Q
c

c

Sect etic and Bit Manipulation Functions 49

Rotation Through the Carry Bit. The |RLC| and fRRCl (rotate

left through carry and rotate right through carry) functions
respectively load the leftmost or rightmost bit of a word into the
carry bit, and move the carry bit into the other end of the word.

Rotating More Than One Bit at a Time. Given a bit pattern in

the Y-register and n in the X-register, pressing ft] | RLn
| , [7] |RRn| , f~9~l

|RLCn|
, or [jf] |RRCn[will rotate the pattern

|
n

|
bits. The stack drops,

placing the result in the X-register.

The status of the carry flag (flag 4) is the same as iffRLl. fRR~). fRLCl .

or
I
RRC

|
were performed

|
n

|
times. For instance, executing | RRn | with

n = 3 will set the carry flag only if the third bit from the right (bit 2)

is 1.

Example: Develop a keystroke sequence that will serve to rotate

left as one word a 16-bit word divided into two separate 8-bit words
held in two separate registers. For instance, with a word size of

eight bits, rotate the word 0001 1 100 1 1 1001 1 1.

Keystrokes

11100

mrnsT^i

11100111

Display

00011100 b

00111000 b

00011100 b

11100111 b

(I
STATUS

I
: 2-08-1000)

High order portion of

16-bit word.

Moves most significant

bit into carry bit.

Recovers high-order

portion.

Low-order portion of

16-bit word.

50 Section 4: Arithmetic and Bit Manipulation Functions

Keystrokes

9 PLC

Ix$>|

9 RLC

|xSy|

|T)(CF]3

Display (j STATUS I : 2-08-1000)

11001110 b Carry bit (most

significant bit of high-

order portion) moves into

least significant bit

position of low-order

portion.

00011100 b Switches X- and
Y-registers.

001 1 1 001 b C cleared: carry bit

moved into first part of

word and zero moved
into carry bit.

11001110 b New word is 00111001

11001110.

11001110 b Suppresses leading

Setting, Clearing, and Testing Bits

Individual bits in a word can be set to 1 or cleared to using the
I

SB
|

(set bit) and I
CB

|

(clear bit) functions. In a manner analogous to

flag-testing, you can also test for the presence of a set bit with [B?]

.

If executed in a program, the result affects program execution.

To set, clear, or test a specific bit in a word:

• The word containing the specific bit must be in the Y-register.

• The magnitude of the number in the X-register specifies the

number of the bit to be set, cleared, or tested.

When the key (I

SB
j
or

I

CB
|
) is pressed, the stack drops and the word

affected returns to the X-register.

Bits are numbered from zero to one less than the word size, with the

least significant bit as bit number 0.

Keystrokes

11111111 | ENTER |

11

[CB]

Display

11111111

11

11110111

(I
STATUS

| : 2-1 6-0000)

Enters quantity and copies

it into the Y-register.

Bit number 3.

Stack drops; resulting

word is in X-register.

Section 4: Arithmetic and Bit Manipulation Functions 51

Testing for the presence of a given bit (E HO) is a conditional test

useful in programming: a decision for program execution can be
based on the bit pattern of a number. (The X- and Y-registers must
contain the proper parameters, as noted above.) Section 9 describes

conditional branching.

Masking
The I MASKL

|

(mask left) and I MASKR } (mask right) functions create

left- or right-justified strings of 1 bits. The magnitude of the

number in the X-register is used to determine how many l's will

comprise the mask. Upon execution, the mask pattern is placed in

the X-register (the stack does not move).

You can create a mask as large as the word size. To place a mask in

the middle of the field of a number, use a shift function in

conjunction with
I
MASKL

I
or

|
MASKR

|
.

Example: The ASCII representation of a two-digit number
occupies 16 bits—eight bits per digit. Given an ASCII "65" (0011

0110 001 1 0101), extract the high-order digit (6), thereby converting
half of this ASCII code to binary coded decimal.

0011 0110 0011 0101 ASCII "65" ("3", "6", "3", "5").

[AND] 0000 1111 0000 0000 Mask.

0000 0110 0000 0000 The extracted, high-order digit ("6").

You can save keystrokes in this example by shifting the digits into

position before masking.

Keystrokes

I
HEX

1
3635 | ENTER

1

8fflfRRnl

Display

3635
3536

4 Rl i

MASKR
1

Land]

F h

6 h

(I
STATUS

I : 2-16-0000)

Rotates word eight bits

to the right to right-

justify the desired hex
digit (6).

Right-justifies a mask of

four 1 bits (1111) in the

16-bit word.

Extracts the rightmost

four bits (6).

52 Section 4: Arithmetic and Bit Manipulation Functions

Bit Summation
Pressing [][] |

#B
1
(number of bits) sums the bits in the X-register

and returns that value to the X-register. The bit pattern is saved in

the LAST X register. No stack lift occurs. (In word sizes 1 and 2,

the result must be interpreted in Unsigned mode.)

"Double" Functions

The HP-16C provides several "double" functions: | DBLX

1

(double
multiply),

I

DBL-r
|
(double divide), and I DBLR

I

(double remainder).

These functions allow the exact calculation of a product double the
given word size and the exact calculation of a quotient and
remainder from a dividend of double word size.

To obtain meaningful double numbers as results in Hexadecimal
and Octal modes, the word boundary (which is based on the
numbers of bits) must not "split" a digit. Therefore, you should
specify a compatible word size: a multiple of four in Hex mode and
a multiple of three in Octal mode.*

Double Multiply

The
I
DBLX

|
function multiplies two single-word quantities in the

X-and Y-registers to yield a double-word result in the X- and Y-

registers. (The stack does not drop.) The result is right-justified,

with the least significant bits returned in the Y-register and the

most significant bits returned in the X-register.

The stack contents during this operation are shown below. The
stack is filled with the values t, z, y, and x, each register holding

one word.

T

Z

Y

X

Keys'

multiplicand

multiplier

Rill DBLX I

...xy

xy...

product

(high order bits in X)

•Section 7 (Programming Basics) includes a program for using
1
DBLX

I

with Decimal
mode. Refer to page 78.

Section 4: Arithmetic and Bit Manipulation Functions 53

Example: To illustrate double multiplication, the calculation of

(7 X 6) in binary with word size 5 and 2's Complement is shown
below.

7 00111 Five bits in Y.

X <b X 00110 Five bits in X.

42
/0

00001 010102 Ten-bit representation of 42iq
'

split between X- and Y-registers.

X Y

Keystrokes

fBINll11 [ENTER
|

110r9l[DBLXl

Display (I
STATUS

I : 2-05-1000)

001 1 1 b Binary mode.

00001 b Most significant bits are

put in X.

01010 b Least significant bits

are put in Y. Result is

therefore 00001 010102 .

Double Divide

The I DBL*
1
function computes the quotient of a dividend of double

word size in the Y- and Z-registers—the most significant bits of

which are in the Y-register—divided by a single-word divisor in the

X-register. The stack drops twice, placing the single-word result in

the X-register.

Error occurs if the answer cannot be represented in a single word
size. Flag 4 (carry) is set if the remainder is not equal to zero. The
stack contents during this operation are:

T t t

Z ...z

1 dividend
t

Y y...
j

(high order bits in Y) t

X X divisor (y...z)/x

Keys* 1 9 IIDBL+I

54 Section 4: Arithmetic and Bit Manipulation Functions

Example: The calculation of (-88 -3- 1 1) in binary with word size 5

and 2's Complement mode is shown below.

- 8
to

X

nooo2

// '88

Keystrokes

01011
1
11101 01000

Y Z

Five-bit result in X.

Ten-bit representation of
-88

10 split between Y- and
Z-registers.

1000 1 ENTER!

11101 I ENTER I

ion CeJLdbl+J

(jD[cE3

Double Remainder

Display

01000 b

11101 b

11000 b

11000 b

(I
STATUS

I : 2-05-1000)

Least significant bits of

10-bit dividend go into Z-

register.

Most significant bits of

10-bit dividend go into Y-

register.

Quotient.

Restores suppression of

leading zeros.

The I
DBLR

|
function operates like I DBL+I except that the remainder is

returned instead of the quotient. If the quotient exceeds 64 bits,

Error results.

The remainder is determined as for the I RMD
|
function (page 43),

with the sign of the result matching the sign of the dividend.

Example: Applying Double Divide

Compute the quotient of
5714AF2 1(5

to 16 hexadecimal places.
7E14684 16

Although the result is a fraction, this problem can be solved in

Integer mode by first finding the integer quotient of

16 zeros

5714AF2000...0i 6

7E14684
1(i

and then placing a decimal point to the left of the result (thereby

dividing the result by 264). Use I
DBL*| to accommodate a numerator

this large.

Section 4: Arithmetic and Bit Manipulation Functions 55

Keystrokes Display

HEX

|T|SET COMPL I UNSGN 1

ENTER]

5714AF2|ENTER|

7E14684[g lrDBLH

h
1

5714AF2 h
J

7E985d8C .h

b0d06F6A h.

(I
STATUS

I : 2-64-0000)

Hex mode.

Unsigned mode allows a

larger result, thereby pre-

venting an out-of-range

result.

Double-sized dividend is

5714AF2X264
.

Carry bit set.

Result is B0D06F6A
7E985D8Ci 6, s° answer
to original problem is

0.B0D06F6A 7E985D8C 16 .

Section 5

Floating-Point Numbers

To cover other aspects of computing, the HP-16C was designed to

perform floating-point decimal arithmetic also. In Floating-Point

Decimal mode, numbers are left-justified and the word size is

automatically set to 56 bits.

Note: Numbers in Floating Point mode and Integer mode are

represented in two different, incompatible formats.* There-

fore, any values stored in the storage registers in one format

are not meaningfully converted when the calculator switches

to the other format. Their integrity is retained, however,

when the calculator is restored to the original mode.

Converting to Floating-Point Decimal Mode
The I

FLOAT
1
(floating point) function establishes Floating-Point

Decimal mode and converts the contents of the X- and Y-registers

(as explained below) to a floating-point decimal number.

Pressing fT| I
FLOAT HQ to 9,) will set Floating-Point Decimal mode.

The number you specify determines how many decimal places will

be displayed; specifying will set scientific notation. (If the

calculator is already in Floating Point mode, no further conversion

of the stack takes place.)

Conversion in the Stack

When you make the conversion to Floating Point mode, you might

want to be able to retain a certain number for further use. The
HP-16C provides a conversion routine that allows you to retain and

reuse a value from Integer mode when the calculator switches to

Floating Point mode. Upon executing
I
FLOAT

[
in Integer mode, the

numbers in the Y- and X-registers are converted to the floating-

point decimal equivalent of (y)(2
I

), which is then placed into the

X-register. The Y-, Z-, and T-registers are cleared.*

* Floating Point mode in BCD (Binary Coded Decimal) form and Integer mode in binary

form.

t Appendix I) provides a program for a conversion between the proposed IEEE floating-

point binary format and HP-16C floating-point decimal format.

56

Section 5: Floating-Point Numbers 57

Keys

T t 0.0000

Z z 0.0000

Y y 0.0000

X X y-2*

UI I
FLOAT

1 4

Ify - 2* is greater than 9.999999999 X 10", flag 5 (out-of-range) is

set and the overflow display (all 9's) results. If there is no overflow,
flag 5 is cleared.

Example: Convert 25E4716 to a decimal, floating-point format.

Keystrokes Display

fHEXl

25E47 [ENTER]

I FLOAT 2

(I
STATUS

|
; 2-64-0000)

Hex mode.

25E47 h Mantissa.

h Exponent of 2.

1 55.207.00 Sets Floating-Point

Decimal mode and a

display of two decimal
places. The number is

equivalent to

(25E47 16) • 2°.

Other Effects of Converting to Floating Point Mode
Switching from Integer mode (Hexadecimal, Decimal, Octal, or
Binary mode) into Floating-Point Decimal mode also sets the
following conditions:

• The word size is set to 56.

• The stack (except the X-register) and the LAST X register are
cleared. Stack lift is enabled.

• The storage registers are not cleared. However, an attempt to
recall register contents (including the Index register) that were
not stored in Floating Point mode usually will result in an
Error 6 *

' Refer to page 68 for details.

58 Section 5: Floating-Point Numbers

• The complement mode functions remain active, but will not

affect the arithmetic functions or number representations. The

complement mode will affect the conversion of the X-register

when the calculator returns to Integer mode.

Digit Entry and Other Display Formats

Changing Signs. Pressing |CHS| (change sign) will reverse the

sign of the displayed number. To key in a negative number, press

fCHSl after its digits have been keyed in. This does not terminate

digit entry in Floating Point mode.

Scientific Notation. Pressing \T\
I
FLOAT

| Q sets Floating Point

mode and sets scientific notation display format. Numbers will be

displayed with six decimal places.

Exponents. Numbers with exponents are entered using [Ejx]

(enter exponent). First key in the mantissa, then press |T] [EEX] and

key in the exponent. (For a negative mantiss a, press I
CHS

I

before

pressing [EEX].) For a negative exponent, press
I
CHS

|

after keying in

the exponent.

Digits from the mantissa that spill into the exponent field will

disappear from the display when [EEX |
is pressed but will be

retained internally.*

Mantissa Display. Regardless of the display format in Floating-

Point Decimal mode, the calculator internally represents each

number as a 10-digit mantissa with a two-digit exponent of 10. If

you want to view the full 10-digit mantissa of a number in the

X-register, press \T} CLEAR
|
PREFIX

|
. The full mantissa will be

displayed as long as the
I
PREFIX] key is held down.

Keystrokes Display (I
STATUS

1
: 2-56-0000)

171 1
FLOAT

1
3

45HE)
6.708

[71 CLEAR I
PREFIX

|

(hold) 6708203932
(release) 6.708

* To prevent a misleading display, [EEX
|
will not operate with a number having more than

seven digits to the left of the decimal point, nor with a mantissa smaller than 0.000001.

To key in such a number, use a form having a greater exponent value (whether positive

or negative).

Section 5: Floating-Point Numbers 59

Overflow and Underflow. When the result of a floating-point
calculation in the X-register is a number with a magnitude greater
than 9.999999999 X 10", ±9.999999999 X 10" is placed in the
affected register (the last three digits of the mantissa are not
displayed). Flag 5 (out-of-range) is set and the G annunciator
displayed.

If the result of a floating-point calculation in the X-register is a
number with a magnitude less than 1.000000000 X 10"", that
number will be replaced by zero. Overflow and underflow do not
halt program execution.

Returning to Integer Mode
Integer mode is restored (and Floating Point mode exited) when
you set one of the number base modes.

Conversion in the Stack

When exiting Floating Point mode, the X- and Y-registers undergo
the reverse of the conversion when Floating Point mode is set.
Considering the number in the X-register to be in the form (y)(2

x
),

an integer y is placed in the Y-register and a power x of 2 is placed
in the X-register. The value for y is defined such that 231 sg|y| < 232

unless y = 0. That is, y, the mantissa, is rounded to a 32-bit integer.
The value for x, the exponent, is determined by y such that (y)(2

x
)

equals the value in the X-register before mode conversion.

The new x- and y-values will be expressed in the number base mode
specified. (In Unsigned mode, the absolute values of x and y are
placed in X and Y.)

The conversion of an integer pair y, x from Integer mode into
Floating-Point Decimal mode and back to Integer mode generally
will not restore the original pair y, x, but an equivalent one.

Example: Convert 1.284 X 10~ 17 to a decimal integer multiplied by
a power of 2.

Keystrokes Display (| status 1 : 2-56-0000)

1 284 1.284

Btpx) 1.284 00
17(CHS] 1.284 -17

60 Section 5: Floating-Point Numbers

Keystrokes

DEC

Display

-88 Converts to Integer

mode. X-register

contains exponent of 2.

73787526 .d Mantissa.

[Ti l
WINDOW

1
1 39 d. Answer is (3973787526 X

o-88\
^ '10-

Example: The following key sequence shows that the conversion

of 1 in Integer mode (1 • 2° = 1) to Floating Point mode and back to

Integer mode (80000000 16 X 2"31
) yields equivalent but different

representations of 1.

Keystrokes Display

HEX

1 ENTER

[Ti
l
FLOAT

1
4

fHEXl

1 h

h

1.0000

FFFFFFE1 h

[7] SHOW [DEC]

\x><y\

-31

80000000

(I
STATUS

|

: 2-56-0000)

y = 1. |y| is not an
integer such that

231 <|y|< 232 .

x = 0.

(y)-(2*) = (l)-(2°) = l.

Converts back to Integer

mode.

x = -31
10 .

y = 8000000016 = 231 .

y is now an integer such

that231 =S|y|<232 and
y2"31 = l.

Other Effects of Converting to Integer Mode

When you switch out of Floating-Point Decimal mode into Integer

mode, the following conditions will exist:

• Word size remains 56 bits.

• The stack and storage registers are not cleared, although any
storage register values which were not entered in Integer mode
will be altered from their original meanings.*

• The complement mode does not change.

' Such values are retrievable in their original form when the calculator converts back to

Floating Point mode, assuming you have not changed the register contents.

Section 5: Floating-Point Numbers 61

Floating-Point Arithmetic

Functions

All of the arithmetic functions which operate in Integer mode ([*].

E> 0> S. QEl) also operate in Floating Point Decimal mode. The
B and {jT\ functions are not limited to integer answers in Floating
Point mode.

The 1 1/x| (reciprocal) function, which is active only in Floating-

Point Decimal mode, calculates the reciprocal of the number in the
X-register.

The Out-of-Range Flag

The arithmetic functions 0, B. 0, and are the only functions
in Floating-Point Decimal mode that affect flag 5 (out-of-range).

Flag 5 is set or cleared whenever these functions are executed.
Executing

|
FLOAT

|
(0 to 9, j likewise affects flag 5.

The carry flag (flag 4) is not affected in Floating-Point Decimal
mode.

Functions Not Active in Floating Point Mode
Generally speaking, the display and number control functions and
bit manipulation operations are not active in Floating-Point

Decimal mode. Appendix B contains a complete list of all

operations that are not active in Floating Point mode.

Digit Separators
The HP-16C is set to use a period as a radix mark (separating
integer and fractional parts of a number) and a comma between
groups of three integer digits. You can reverse this setting to

conform to the numerical convention in many countries. This
procedure (I

ON
|
/) will reverse the current setting:

1. Turn off the calculator.

2. Press and hold fONl .

3. Press and hold Q]

.

4. Release [ON] , then releaseQ

.

Section 6

Memory and Storage
Memory Allocation

Data storage, in the form of registers, and program memory, in the

form of program lines, share a common memory space in the

HP-16C. This memory space consists of 203 bytes (eight bits to one
byte), all of which are initially* allocated to data storage. However,

as you enter program instructions (as explained in section 7,

Programming Basics) memory space is automatically allocated to

program memory.
203 Bytes

Program Memory
j
Data Storage Registers ... R 2 R

1
R

^ Movable Partition

Converting Storage Registers to Program Memory

The automatic partitioning of memory space from data storage

into programming takes place in segments of seven bytes, each
segment worth seven program lines. Starting with the first line you
store in a program and continuing with each succeeding seventh

line, seven bytes (lines) of memory are converted from data storage

into program memory.

Automatic Memory Allocation (Bytes)

Program Lines*

Recorded

Program Memory
Allocated

Storage Memory
Allocated

bytes bytes 203 bytes

1 to 7 7 196

8 to 14 14 189

15to21 21 182

190 to 196 196 7

197 to 203 203

• One line equals one byte.

•"Initially" means the condition of the calculator when it leaves the factory or when
Continuous Memory is reset.

62

Section 6: Memory and Storage 63

Therefore, the number of bytes dedicated to storage registers and

the number of bytes dedicated to programming are always

multiples of seven.

Note: The calculator converts data storage registers to

program memory in reverse numerical order, from the

highest numbered to the lowest numbered. Furthermore,

any data contained in a storage register will be lost when
that register is converted to lines of program memory.

Converting Program Memory to Storage Registers

Once you have stored program instructions they are well protected.

The allocation of program memory space back to data storage

registers is accomplished only by your intentionally deleting

program instructions—either singly or all at once (by CLEAR
iPRGMl or Continuous Memory reset). What is deleted from program

memory is reallocated to data storage memory in increments of

seven bytes.

Note that this means you cannot unintentionally lose program
instructions. If you try to address a storage register whose space is

occupied by program lines, an Error 3 (nonexistent storage

register) will result.

Storage Register Size

Each register represents a word, and so its size depends on the

current word size.* The size of a storage register is always the

smallest multiple of four bits (half-bytes) equal to or greater than

the current word size. For example, a current word size of either 13,

14, 15, or 16 will produce a storage register length of 16 bits (two

bytes).

In Floating-Point Decimal mode, the word size and therefore the

storage register size are automatically set to 56 bits (7 bytes).

The total possible number of data storage registers equals the

number of available bytes (203 minus the bytes of program
memory) divided by the number of 8-bit bytes per register. For

example, if the current word size is 16 bits, then each register

comprises 2 bytes (16 bits). If program memory is cleared (203 bytes

" Except the Index register (discussed later in this section), which is of constant size (68

bits) and not convertible to program memory.

64 Section 6: Memory and Storage

available for storage), then 101 storage registers(R to R100l0
) are

available, since 203/2 = 101.5 and half registers are not available

for data storage.

Given a word size of 16, the configuration of memory allocation
would look like this with the first recorded program line:

Storage Registers (16 bits each)

Directly

addressable

registers

(R 20,

Rf

R.o

R.F

R32

"99

(R 64 16)
R 100

Half register left

(not usable).

Program Memory

001 -instruction

002-

003-

004-

005-

006-

007-

Lines 002 to 007
are available but

unoccupied.

These 3Vi registers

(seven bytes) are

converted to seven

lines of program

memory when the first

program instruction is

recorded.

When the eighth program instruction is recorded, another 3'/2

registers (seven bytes) will be converted to program memory. This

Section 6: Memory and Storage 65

will leave 94 Vt registers, only the whole 94 (R to R
93i0

or R5D , :)
of

which remain available for actual use as data storage registers.
(The remaining half register will be used in the next conversion to
program memory.)

Viewing the Status of Memory Allocation
(|
MEM

|)

A temporary display of the current allocation of memory results
when you press [t]

I
MEM

|
. (Hold

I
MEM

|
to prolong the display.) The

information in the display will be

P-B r-RRR

B is the number of bytes (program lines) which may be added
to program memory before another seven bytes are allocated
(diminishing available storage register space by seven
bytes). 0^B^6.

RRR is the total number of storage registers currently available
for data storage. s=RRR ^ 406, with RRR always given in
base 10. (Note the smallest possible register size is four bits,

yielding a maximum number of 406 registers.)

In the situation diagrammed on the preceding page—initial
memory configuration, word size 16—the

I
MEM

1
function would

show the following information:

Keystrokes

[ON]/H fBSPl

Display

I fMEMl (hold)

(release)

g p/r

P-0

000-

001-

h

r-101

h

Continuous Memory
reset; word size defaults

to 16 and program
memory is cleared.

Zero lines to go before

seven bytes will be

converted to program
memory. 101 storage

registers available.

Sets calculator to Pro-

gram mode; line 000.

Records one program
line.

66 Section 6: Memory and Storage

Keystrokes Display

|~f] | MEM P-6
001

r-098
1

Six lines (bytes) to go

before another seven

bytes are converted to

program memory.
98 storage registers

available.

fflCLEAR
I

PRGM 000 Clears program memory.

Exits Program mode.TlfP/Rl h

Storage Register Operations

When numbers are stored or recalled, they are copied between the

display (X-register) and a data storage register. The total number
of available storage registers will depend on the current word size

and the amount of available memory, as explained above.

Of those registers available, up to 32 can be addressed directly by

name (0 to 9 and A to F, .0 to .9 and .A to .F); the remainder (up to 69

in word size 16) can only be accessed indirectly, using the Index

register (described later in this section). Since the highest-

numbered registers are the first to be converted to program

memory, it is wisest to store data in the lowest-numbered registers

available. (See also the diagram on the inside back cover.)

Storing and Recalling Numbers Directly

To store or recall numbers between one of the directly accessible

data storage registers and the X-register, press I STO
| (0 to F, .0 to F,

Q]} or |
RCL| (0 to F, .0 to .F, Q]}. The

I
STO

|
operation replaces the

contents of the addressed register with a copy of the X-register

contents; the
I
RCL| operation lifts the stack (if it is enabled) and

then places a copy of the addressed register contents into the

X-register.

If you attempt to address a nonexistent register (including one that

cannot exist because the memory space is occupied by program
lines), the display will show Error 3. Remember also that you can

lose stored data values when data storage registers are

automatically converted to program memory, and that the highest-

numbered registers are converted first.

Section 6: Memory and Storage 67

Example: Store 108 in R , recall it, and multiply by 2.

Keystrokes

ITU FLOAT |

|STO|0

I

BSP
|

I
RCL|

20

Display

1 08
100,000,000.
0.

100,000,000.
200,000.000.

Display depends on last

contents ofX and Y.

Alteration of Register Contents

Whenever you change the current word size, the contents of the

stack are affected (as explained under Word Size in section 3), while
those of the storage registers are not. However, a change in word
size does change the size and boundaries (and total number) of the
storage registers. This can make a specific set of stored bits

inaccessible in its original form

—

until you restore the original

word size. Therefore, you can temporarily change the word size (for

instance, for a calculation), and still recover your stored data when
you return to the original word size.

Example: The following sequence illustrates what happens to

data stored in R and R, when the word size is doubled (from 16 to

32) and then restored to its original size.

Keystrokes

fHEXl 1 |T|
I
WSIZE

|

ffl CLEAR [REG]

1234 fSTO~l Q

5678rSTOll

2ornfwsizEi

IRCLI O

I RCL

1

1

10 [Ti
l
WSIZE

|

IRCLI O

[rclI i

Display

1234

5678

5678

56781234

1234
5678

Hex (Integer) mode;

word size 16.

Clears storage registers.

Stores in Rq.

Stores in Rj.

Doubles word size.

Current R„ is now a
concatenation of the old

Rq and Rj.

Current R, is cleared.

Restores original word
size.

Original contents of R
and R! unchanged.

68 Section 6: Memory and Storage

When the calculator converts between Integer and Floating-Point

Decimal modes, the register contents are not changed. However,

due to differences in the internal representation of the two modes,

contents stored in Integer mode will not have the same value in

Floating Point mode, and vice-versa. The integrity of the contents

is preserved, however, when the calculator converts back to the

original mode and word size.

Clearing Data Storage Registers

Pressing Q] CLEAR I
REG

1
(clear registers) clears the contents of all

data storage registers to zero. (It does not affect the stack or the

LAST X register.) To clear a single data storage register, store zero

in that register. Resetting Continuous Memory clears all storage

registers and the stack.

The Index Register

The Index register (Ri) is a permanent storage register that can be

used to indirectly address other storage registers, indirectly branch

to program labels, and hold loop counters for program loop control.

(The latter two uses are discussed in section 9.) Unlike other

storage registers, the Index register is always 68 bits, regardless of

current word size, and it is never converted to lines of program
memory.

Abbreviated Key Sequences

Whenever the Q] or QTO key is used following another function key

(such as | STO
j ,
[RCL| , |GTO| , or |GSB|), the Q] prefix key before the [T]

or |7jT] can be omitted since the sequence is unambiguous. This is

called an abbreviated key sequence. For example,
I
STO

| Q] is shorter

than |STO"HT|[T|but has the same effect.

Storing and Recalling Numbers in the Index Register

The contents of the Index register itself are accessed using the Q]

function: |STO| |T|, | RCLl fT). or Usi| . A number stored in Rr will be

represented in a 68-bit format, numerically equivalent to the

number in the X-register. A number copied from Rj into X will be

truncated to fit the word size, preserving the least significant bits.*

* If the contents of R| are recalled in a word size smaller than that used to store the

contents, the recalled value may not be numerically equivalent to the value in Rj.

Section 6: Memory and Storage 69

Store and Recall. Numbers are copied into and out of the Index
register using

I
STO

| Q] and I
RCL

1

\T\
, operating the same as the other

registers.

X Exchange I. Analogous to the IxSyl function,
1 x s 1

1

will

exchange the contents of the X-register and the Index register.

Storing and Recalling Numbers Indirectly

Storage registers can be accessed indirectly using the QjT] function:

I
STO

| [Till , I
RCL

1
|7i)1 , or |xS(i)| . The absolute value of the number in RT

determines the storage register address.* (In Floating-Point
Decimal mode, only the integer part is used.) The table below
shows the correspondence between Rj and storage register

addresses.

Indirect Addressing

If R T Contains: \Jj)} Will Address:

(016) R.o

9 Oie)
10 (A 16)

R 9

Ra

15 (F16)

16 (10 16)

Rf

R.o

31 (1F 16)

32 (20 16)

33 (21 16)

R 32

R 33

R.F

<= R 2016 >

(=R2 i 16)

The lSTOl lTiyi,
I
RCL

I RTTI . and Us(i)l functions are the only means to

access a storage register beyond the first 32 (beyond through .F),

but they can be used for any register, as the table illustrates.

The absolute value is computed using a 68-bit word size and the current complement
mode.

70 Section 6: Memory and Storage

Example: Store 3 in R^e- 1° order to have a storage register as

high as R326 available for data storage, the word size must be at

most four bits long (203 bytes/0.5 byte = 406 registers.) To be able

to store a number as large as 326 in the Index register, however, the

word size must be larger. (The Index register must be used to

address any register higher than R31 , which is R p.) To store 3 in

R326 wiH therefore require two manipulations of word size. Assume
that the calculator is set to word size 4.

Keystrokes

rDECl OffllWSIZEl

326
STO I

4 ffl l
WSIZE]

3ISTO (i)

BSP

RCL Id)

Display

326
326

6

3

3

(I
STATUS

| ; 2-04-0000)

Sets a large word size

(64).

Stores 326 10 in Rj.

406 registers of 4 bits

each are now available.

Stores 3 in R.326-

Clears display.

Recalls contents ofR326-

Part II

HP-16C
Programming

Section 7

Programming Basics

The next three sections are dedicated to explaining aspects of

programming the HP-16C. These programming sections will first

discuss basic techniques (The Mechanics), then give example(s) for

the implementation of these techniques, and lastly discuss any
details of operation (Further Information). This allows you to read

only as far as you need to support your use of the HP-16C.

The Mechanics

Creating a Program

Programming the HP-16C is an easy matter, based simply on
recording the keystroke sequence used when calculating manually.
(This is called "keystroke programming.") To create a program out

of a series of calculation steps requires two extra manipulations:

deciding where and how to enter your data; and loading and
storing the program. In addition, programs can be designed to

make decisions and perform iterations through conditional and
unconditional branching.

Stepping through the fundamentals of programming, we'll work
through a program designed to concatenate two 16-bit words in the

X- and Y-registers into one 32-bit word in the X-register.

Loading a Program

Program Mode. Press [IT]
|
P/R

|
(program/run) to set the

calculator to Program mode (PRGM annunciator on). Most
functions are stored and not executed when keys are pressed in

Program mode.

Keystrokes Display

nn iP/Rl 000- Switches to Program
mode; PRGM
annunciator and line

number displayed.

72

Section 7: Programming Basics 73

Keystrokes in Program mode become program instructions
occupying program lines. These numbered lines indicate the
calculator's position in program memory. Line 000 marks the
beginning of program memory and cannot be used to store an
instruction; the first line that contains an instruction is line 001.
No program lines except 000 exist until instructions are stored in
them.

Programs are usually started at line 001, though you can start a
program at any existent line. As you enter instructions, any
existing programs will be preserved and "bumped" down in
program memory, thereby incrementing their line numbers.

Beginning a Program. Clearing program memory will erase all

programs in memory and position the calculator to line 000. To do
so, press [Q CLEAR |PRGM| in Program mode.

If the calculator is not at line 000 and you do not want to clear
program memory, you can position the calculator to line 000 by
pressing Q] CLEAR |PRGM| or [Gfo\ Q 000 in Run mode, or by
pressing [GTO

| Q 000 in Program mode. (The iGTOl Q instruction
cannot be recorded.)

A
|
LBL

|
(label) instruction— [~9~1

1 LBL

|

followed by a digit or letter
label {0 to 9, A to F|—is used to define the beginning of a program
or routine. The use of labels allows you to quickly select and run a
particular program or routine.

Keystrokes Display

ECLEAR |PRGM| 000- Clears program memory
and sets calculator to

line 000 (start of

program memory).

(TltLBpA 001-43,22, A Keycode for label "A".

Recording a Program. A program consists of the same
keystrokes you would use to solve a problem manually. Keys
pressed in Program mode are recorded in memory as programmed
instructions.* The display contains a line number and keycode(s).
Keycodes are one- or two-digit numbers indicating the position of
keys on the keyboard (described in more detail later).

" Except for the nonprogrammable functions, which are listed on page 81.

74 Section 7: Programming Basics

Example: The body of the concatenation program is listed below.

Assuming that two separate numbers are given in the X- and Y-

registers, program lines 002 to 008 below will concatenate those

two 16-bit words into one 32-bit word. The word initially in the

X-register will become the most significant bits of the result.

Keystrokes Display

|HEX| 002- 23
2. 003- JJOUOico tile wuru Sl/.t

004- from 16 to 32, providing

miWSIZEl 005- 42 44
)

16 extra bits to the left of

tHp nnmhprs in X and Y

1 9 IlLSTxl 006- 43 36 Brings back word size

(32).

am] 007- 42 b Computes one-half of

word size (16).

008- 42 E Shifts number left 16

bits.

f OR 009- 42 40 OR operation here

concatenates the

contents ofX and Y.

Ending a Program.

• The instruction QF] I
RTN

| (return) will end a program, return to

line 000, and halt.* This instruction can be omitted if the

program is the last one in memory, since the end of the

program memory contains an automatic
I
RTN

|
.

• The instruction [R/S

I

(run/stop) will stop a program without

moving the line position to line 000.

Keystrokes Display

nnfRTNl 010- 43 21 Optional if this is the

last program in memory.

* Except when a subroutine return is pending, as discussed in section 9, page 94.

Section 7: Programming Basics 75

Running a Program

Run Mode. Switch back to Run mode (no PRGM annunciator
displayed) when you are done programming by pressing f~g~l I P/R

I

Program execution can take place only in Run mode.

Keystrokes Display

H1 I
P/R

I Run mode; no PRGM
annunciator displayed.

Display will show
previous result.

The position in program memory does not change when the
calculator transfers between Run mode and Program mode.
Whenever the calculator has been off, it "wakes up" in Run mode.

Executing a Program. In Run mode, press | GSB
|
label. This

addresses a particular program and starts its execution. The
display will flash running. (The

I
GSB

I
key is the same one used—

under different circumstances—to "go to subroutine".)

Keystrokes

I

HEX

|

FFFE | ENTER
1

DDDC

GSB A

ffl l
STATUS]

Display

FFFE h

dddC h

dddCFFFE h

2-32-0000

(I
STATUS

| : 2-16-0000)

Enter the first number
into the X- and Y-

registers.

Key the second number
into the X-register. These
digits will become the

most significant ones.

The concatenated hex
number.

The word size is now 32.

Alternatively, you can position the calculator to a particular line

using lGTO| nnn (three-digit line number) or |GTO| label and then
start execution by pressing |R/S| .

Intermediate Program Stops

Use Q] [PSf] (pause) as a program instruction to momentarily stop a
program and display an intermediate result. Use more than one
iPSEj for a longer pause.

76 Section 7: Programming Basics

A |R/Sl instruction will stop the program indefinitely at the line

after the I R/S

1

. You can resume program execution (from that line)

by pressing
I

R/S
j
in Run mode—that is, from the keyboard.

Data Input

Every program must take into account how and when data will be

supplied. Data input can occur before executing the program or

during planned interruptions in the program.

Prior Entry.

1. You can store the values (with |
STO

1

) into a storage register,

from which they will be recalled (with a programmed
I
RCL|)

within the program.

For example, the concatenation program could recall a value

for the word size instead of writing it into the program:

Keystrokes

rglfLBLlA

fHEXl

I RCL

1

1 Recalls the word size from Rj.

m i
WSIZEl

2. If data will be used in the first line(s) of a program, you can
enter it into the stack before starting the program. Don't

start the program with | ENTER"]—the I
LBL

|

,
[GSB| , and |GTO[

functions terminate digit entry and enable stack lift.* This

method was used in the preceeding example.

The presence of the stack makes it possible to load more than

one variable prior to running a program. Keeping in mind
how the stack moves with subsequent operations and how
the stack can be manipulated (as with IxSyl and |

R+
|), it is

possible for you to write a program to use variables which
have been keyed into all four registers.

This is the method used on page 75, where the two numbers
were placed into the X- and Y-registers before running the

program. In fact, you could store the lower and higher order

* Note, however, that
|
R/S

I
is neutral with respect to stack lift. There is a complete list of

neutral and lift-disabling functions in appendix B.

Section 7: Programming Basics 77

words (numbers) in the Z- and Y-registers, and the word size

in the X-register. Given these values in the stack, the first

part of the program could then be:

Keystrokes

I
9

1 1
LBLjA Word size in X-register.

Em
\T\

|
WSIZEl Stack drops. The higher order word

: (from Y) is now in the X-register; the

lower order word (from Z) is in the

Y-register.

Direct Entry. Enter the data as needed as the program runs.

Write a I R/S

1

(run/stop) instruction into the program where data
values are needed so the program will stop execution there. Enter

your data, then press |R/S| to restart the program.

Program Memory
The HP-16C has 203 bytes available for data storage and program
lines. Program memory is automatically allocated from data
storage, seven bytes (for seven lines) at a time. Space for data
storage registers is decremented accordingly. Refer to the

explanation of memory allocation in section 6.

Program Instructions and Keycodes

Each digit, decimal point, and function key is considered an
instruction and is stored in one line (occupying one byte) of

program memory. Instructions that include prefixes (such as 0,
I
STO

I , |
GTO

| , and |LBL|) still occupy only one line.

Each key on the HP-16C keyboard is identified in Program mode
by a one- or two-digit "keycode".

The first digit of a two-digit keycode refers to the row (1 to 4 from
top to bottom), and the second digit refers to the column (1, 2, 9,

from left to right). The keycode for a digit key (including A to F) is

simply that digit. For example:

Instruction Code

fgllLBLlI

[7)SET COM PL | UNSGN
|

001-43,22, 1

002- 42 3 SETCOMPLlUNSGNl
is "3".

78 Section 7: Programming Basics

V1ASKR ilMU

CB B? AND

<i> I PRGM REG PREFIX WINDOW I S 2 S UNSGN NOT

H (i

IH EWL ET T • PACKARD

42: Fourth Row, Second Column

Example
The following program utilizes the "double" functions (explained

on pages 52-55) to multiply large numbers of any base and obtain

an exact decimal answer at least 38 digits long (that is, up to and

not including 1019 X 264). The double-sized result is placed into

registers X (the most significant digits) and Y.

Since the "double" functions operate internally in binary, it is

necessary to perform the extra manipulations below (dividing by

10 19
, the largest exponent of 10 that can be held in one register) to

obtain a meaningful decimal answer.

Keystrokes Display

RICLEAR
|
PRGM

|

9 P/R

"g1[LBDl

000-

001-43,22, 1

Sets program memory to

line 000 but does not

clear it. (This function

only clears in Program
mode.)

Program mode (PRGM
annunciator displayed).

Section 7: Programming Basics 79

Keystrokes

Q]SET COM Pi-

Display

UNSGNl 002- 42 3

9 DBLx

rsToi i

i
«*y

|

fST0l2

I
RCLI O

g
|

|
DBLR

|

02

I
RCL

1

1

fRCLl O

rgirDBiTi

DEC

003- 43 20

004- 44 1

005-
006-

007-
008-

009-
010-

011-

012-

013-
014-

34
44 2

34
45

43 9

45 2

45 1

45

43 10
24

Allows a larger possible

answer since there is no
sign bit.

Double-multiplies the

contents of the X- and Y-

registers.

Stores the most
significant digits of the

result into Rj.

Stores the least

significant digits of the

result into R2 .

Recalls (for the divisor)

the largest possible

power of 10.

Least significant digits

of product.

Most significant digits.

Divisor.

Ensures that the result is

expressed in base 10.

015- 43 21

To run the program, set the word size to 64 and store 10 19
(the

largest possible power of 10 in Unsigned mode) into R . Then enter
the numbers 12345678987654 and 987654321234567 into the X- and
Y-registers.

80 Section 7: Programming Basics

Display

Returns to Run mode (no

PRGM annunciator).

Display shows last

result.

Sets word size 64, the

largest possible word
size.

00000000 .d

00000000 .d Stores 1019 in R .

78987654 .d Enters the two numbers
to be multiplied.

21234567 d

1 9326320 .d 1 Executes program
12 d. J labeled "1"; resulting

product is in X- and Y-

registers. Most
significant word is

1,219,326,320.

31035818 .d \ Least significant

12676360 .d.
J
word is

73 d.) 731,267,636,031,035,818.

Exact answer is 1,219,

326,320,731,267,636,031,

035,81810 .

To repeat the program with different values for the multiplicands,

just place those numbers in the X- and Y-registers and press I GSB

1

1.

(Flag 4 is set during execution of this program because the
I

DBI>|

operation leaves a remainder not equal to zero. However, this is of

no significance because the program calculates the remainder in

line 009.)

Further Information

Program Labels

Labels in a program (or subroutine) are markers telling the

calculator where to begin execution. There are 16 possible labels

Keystrokes

rgl|p/R|

Orfl lWSIZElfDECl

RlSETCOMPL IUNSGNl

1 0000000 00000000
OOOO rSTOl O

12345678987654
I ENTER I

987654321234567
[gsbIi

m i

WINDOW
|
1

Ul l
window] 1

m i
window] 2

Section 7: Programming Basics 81

(the digits through 9 and A through F) for program and
subroutine use.

Following a search instruction like [GSBl label, the calculator will
search downward in program memory for the corresponding label.
If need be, the search will wrap around at the end of program
memory and continue at line 001. When it encounters an
appropriate label, the search stops and execution begins.

Since the calculator searches in only one direction from its present
position, it is possible (though not advisable) to use duplicate
program labels. Execution will begin at the first appropriately
labeled line encountered.

Unprogrammed Program Stops

Pressing Any Key. Pressing any key will halt program
execution. It will not halt in the middle of an operation, however.

Error Stops. Program execution is immediately halted when the
calculator attempts an improper operation that results in an Error
display.

To see the line number and keycode of the error-causing instruction
(the line at which the program stopped), press any one key to
remove the Error message, then switch to Program mode.

If an out-of-range condition (including overflow) occurs during a
program, flag 5 and the G annunciator are set. Program execution
will not stop.

Nonprogrammable Functions

When the calculator is in Program mode, almost every function on
the keyboard can be recorded as an instruction in program
memory. The following functions cannot be stored as instructions
in program memory.

GO CLEAR |
PREFIX

| |Tl fp7R|
\V CLEAR

[

PRGivT
i BfMEMl |TlfBSTl

LqIJ/B m i
status

I |W1
LQN]/Q [GTQ]Rnnn

Section 8

Program Editing

The HP-16C is equipped with several editing features to help you

alter an instruction or program already stored in the calculator.

The Mechanics
Making a program modification of any kind involves two steps:

moving to the proper line (the location of the needed change) and

making the deletion(s) and/or insertion(s).

Moving to a Line in Program Memory

The Go To (p3TO|) Instruction. The sequence I
GTO

| R nnn will

move program memory to line number nnn, whether pressed in

Run mode or Program mode (PRGM displayed.) This key sequence

is not programmable; it is for manually finding a specific position

in program memory. The number nnn must be a three-digit number

corresponding to an existing program line in the range

000 nnn ^ 203.

The Single Step (I
SST

|) Instruction. To step through program

memory one line at a time, press
I
SST

|
(single step). This

(nonprogrammable) function can be used to trace a program with

or without executing it.

In Program mode,
\
SST| will move the memory position forward one

line and display that instruction. The instruction is not executed. If

you hold the key down, the calculator will continuously scroll

through the lines in program memory.

In Run mode,
I
SST

|
will display the current program line while the

key is held down. When the key is released, the current instruction

is executed, the result displayed, and the calculator steps to the

next program line to be executed. This function is very useful for

tracing the execution of your program, one line at a time.

The Back Step (I
BST

1

) Instruction. To move one line backwards

in program memory, press [IT) I BST
| (back step) in Program or Run

mode. This function is not programmable. I
BST

|
will scroll (with the

| BST
|
key held down) in Program mode. Program instructions are

not executed.

82

Section 8: Program Editing 83

Deleting Program Lines

Deletions of program instructions are made with
|

BSP| (back space)
in Program mode. Move to the line you want to delete, then press
I BSP

|

. All subsequent program lines will be renumbered to stay in
sequence.

Pressing
|
BSP

|
in Run mode does not affect program memory, but is

used for display clearing. (Refer to page 17.)

Inserting Program Lines

Additions to a program are made by moving to the line preceding
the point of insertion. Any instruction you key in will be added
following the line currently in the display. To alter or replace an
instruction, first delete it, then add the new version.

If all memory space is occupied, the calculator will not accept any
program instruction insertions, and Error 4 will be displayed.

Example
The description below uses the concatenation program (from page
74, section 7) to illustrate the editing features of the HP-16C. First
we'll change the given word size from 32 (20 16) to 8 (816), then
single-step through the revised program to monitor its execution.

The editing process is diagrammed below. The given line numbers
assume that this program occupies lines 001 to 010 in memory.

Original Version Edited Version

001- nrniBLi A

002- [HEX]

003- 2

004-

005- |7i rwsizT|

006- [Tl [ISTx1

007- fT|rSRl

008- f7| |RL^l

009- rnroRi

010- rgl fRTNl

001 -(T][lbl}a

002--I HEX I

003- 8

004- |f HWSIZEl

005- IflllLSTxl

006- CDUS
007- [flfRLnl

008- EES
009- rglfRTNl

84 Section 8: Program Editing

Making a deletion or additon of a program line alters the line

numbers of those program lines following. By editing the program

from the end backwards, you can preserve the original line

numbers of parts of the program not yet edited. This allows you to

access remaining lines by their original numbers. The editing steps

below assume the concatenation program occupies line 001 to 010.

Keystrokes Display

|~g~|| p/R
1

Program mode. (Line

position depends on

where calculator

position was last.)

|GTOl F|004 004- Moves position to line

(or use |SST|) 004 (instruction is

digit 0).

|~BSP~lf~BSPl 002- 23 Deletes lines 004 and
003.

8 003- 8 Adds a new line 003: 8.

Effect of last three steps

is to change 20 to 8.

To trace the operation of the revised program, return to Run mode,

set word size 4, and place 7 16 in the Y-register and 6 16 in the X -

register. Then execute the program one step at a time with I
SST

|
.

The concatenated result with twice the word size should be 67 16 .

Keystrokes Display (I
STATUS

I ; 2-04-0000)

ITl
I
P/R

I
Run mode.

I
HEX I

7 1 ENTER
|

7 h Four-bit, least

significant word.

6 6 h Four-bit, most
significant word.

I
GTO

|

[a] 6 h Positions program
memory to label "A".

ISSTl (hold) 001-43,22, A Program line 001: label

"A".

(release) 6 h X-register contents.

Section 8: Program Editing 85

Keystrokes Display

ISSTI 002- 23 Line 002: Hexadecimal
6 h mode set.

fssTi 003- 8 Line 003: 8.

8 h
ISSTI 004- 42 44 Line 004: fflfwsiZE I

.

6 h Word size is now 8.

ISSTI 005- 43 36 Line 005: HI ITstTI .

8 h Brings back word size.

HOT] 006- 42 b Line 006: fflfSRl.

4 h Calculates one-half of

word size.

HOT] 007- 42 E Line 007:ff1fRLrT].

60 h Number shifted left four

bits.

ISSTI 008- 42 40 Line 008: [flfORl.

67 h Eight-bit concatenated

word.

[SSI
!

009- 43 21 Final instruction

67 h (return).

Further Information

Line Position

The calculator's position in program memory does not change
when it is shut off or when Program/Run modes are changed.
Therefore, if the calculator shuts itself off, you need only turn it on
and switch to Program mode (the calculator always "wakes up" in
Run mode) to be back where you were.

The calculator cannot move to a program line that does not contain
an instruction (is not yet "created"). When you use |SST| . the
calculator will "wrap around" to line 000 after encountering the
end of current program memory.

Initializing Calculator Status

The contents of storage registers and the status of calculator
settings will affect a program if the program uses those registers or
depends on a certain status setting. If the current status is

86 Section 8: Program Editing

incorrect for the program being run, you will get incorrect results.

Therefore, it is wise to initialize the calculator—such as clear

registers and set relevant modes—either just prior to running a

program or within the program itself. Note that any status

condition set by a program will also affect any subsequent

programs.

Functions used to initialize conditions in the calculator are: the

"CLEAR" functions, the "SET COMPL" functions, the number base

modes, Floating-Point Decimal mode, |WSIZE|
,
|SF| and |CF| .

Section 9

Program Branching and Controls

The branching capabilities of the HP-16C include simple and
conditional branching—in which program execution depends on a
certain condition—and subroutines. The use of the Index register,

which can hold a counter value, greatly enhances the calculator's
branching and looping control.

The Mechanics

Branching

The Go To (|GTO|) Instruction. Simple branching—that is,

unconditional branching—is carried out with the instruction |GTO|
label. In a running program, |GTO| jO to 9, A to F, (7|) will transfer
execution to the designated program or routine.* (It is not possible
to branch to a line number.) The calculator searches forward in

memory for the indicated label, wrapping around to line 001 and
beyond if necessary.

|GTQ| label can also be used in Run mode (that is, from the
keyboard) to move to a labeled position in program memory. No
execution occurs.

Go To Subroutine (j GSB |). Transfer to a labeled subroutine is

executed by the sequence
| GSB |

label. Program execution auto-
matically transfers back to the main program when a | RTN

|

instruction is encountered/ Subroutine execution is described later

in this section (page 94).

*|GTO
I B and

|
GSB

| |7) are abbreviated key sequences (no Q] keystroke necessary), as
explained on page 68.

If no subroutine return is pending, a
I
RTN

I instruction halts execution and returns the
calculator to the top of program memory.

87

88 Section 9: Program Branching and Controls

Indirect Branching Using the Index Register

By placing an index value in R T (the Index register), you can

indirectly branch to a location (|GTO| fT|) and indirectly call a

subroutine (I
GSBl lTI).

These functions will transfer execution to the label that

corresponds to the absolute value of the number in the Index

register according to the table below* (In Floating Point mode,

only the integer portion of the number in R] is used.) There are 16

possible labels: to 9 and A to F.

For instance, if the Index register contains -1410 (| STATUS I : 2-08-

0000), then a |GTO| [T] instruction would transfer program

execution to I LBL |
E (|-14 10 |

= E 16).

Indirect Branching

If R! Contains:
iGTOlUlor iGSBllllwill

transfer execution to:

(0i 6)
ITblIo

9 Oi6> mri9
10 (A,e) |Tbl]a

15 (Fie> [lbTIf

Conditional Tests

Another way to alter the sequence of program execution is by a

conditional test, a true/false test which compares the number in

the X-register either to zero or to the number in the Y-register. (In

l's Complement mode, these tests consider -0 equal to 0.)

The HP-16C provides eight different tests (all |T]-shifted

functions):

f7<71 ^<0l ^>y\ [^>0l lx*y| |x#0| U = y| lx = 0|

Following a conditional test, program execution follows the "Do if

True" rule: it proceeds sequentially if the condition is true, and it

skips one instruction if the condition is false. A I GTO

1

instruction is

•The absolute value is computed using a word size of 68 and the current complement

mode.

Section 9: Program Branching and Controls 89

often placed right after a conditional test, making it a conditional

branch; that is, the |GTO| branch is executed only if the test

condition is met.

Program Execution After Test

If True If False

n
Q15-ff1 fLBLl 2

016-

01 7- GO[713

018- [GTOl2

019-

020- r
"Do if True"

Testing for Set Flags and Set Bits

Additional tests for conditional branching are provided by the IT?]

(flag set?) and [§?] (bit set?) functions. Following these

instructions—as with the other conditional tests—program execu-

tion follows the "Do if True" rule (illustrated above): it proceeds

sequentially if the flag (or bit) is set, and skips one line if the flag

(or bit) is clear.

As discussed in section 3, the flag numbers and their meanings are:

1
1 } User flags (used to control programming).

2 j

3 Controls display of leading zeros.

4 Carry or borrow condition.

5 Out-of-range condition.

Although flags 4 and 5 are set automatically by the calculator, the

user can also set them. If you set flag 4, the carry bit is set to 1.

Refer to section 3 (page 36) for a full discussion of setting flags, and
section 4 (page 50) for a full discussion of setting bits.

90 Section 9: Program Branching and Controls

Loop Control with Counters:
|
DSZ| and

|
ISZ

|

The |
DSZ

|
(decrement and skip next line if counter equals zero) and

I
ISZ

I
(increment and skip if zero) functions can control loop

execution by referencing and adjusting (incrementing/decre-

menting) a counter value in the Index register. Then, when that

counter value reaches zero, program execution skips one line.

Each time one of these functions is encountered in a running
program, the given counter value in the Index register is either

decremented (I
DSZ

|) or incremented (I
ISZ

|

) by one. If the resulting

value equals zero, the next instruction is skipped. This allows exit

from a loop if the skipped line was a branch into a loop.

Conditional Branch with |
DSZ

l
or |ISZ|

False (R, 5*0) True(R, = 0)

continue loop
instruction

DSZ

instruction

exit loop

{

-J

"Skip if True"

The value in Rt is interpreted according to the current complement
mode. It can be positive or negative, in integer or floating-point

format. The instructions
I
DSZ

|
and

I
ISZ

1
do not affect the status of

the carry and out-of-range flags.

Example
A "checksum" routine can be used to test the integrity of stored

data values. Using
I
#B

|
you can determine the sum of a bit pattern

and then compare that sum to the sum of the same bit pattern at a

later time.

Section 9: Program Branching and Controls 91

The following program sums all the bits in the bit pattern in a

given storage register, yielding a checksum. The contents of

storage registers RA through Rj are sequentially checksummed. As
the bits are summed, they are added to the updated, double-sized

checksum being held in registers Y and Z. This is what the stack

contains just before line 012:

Current checksum: most significant word.

Current checksum: least significant word.

Number whose bits will be summed and added to

the current double-word contents in Y and Z.

The resulting checksum will be placed in registers X and Y.

This program uses
I
DSZ| to decrement a register pointer in the

Index register and to control conditional loop branching.

Keystrokes

ginvR]

(J] CLEAR |PRGM[

RlSET COMPL I UNSGN

1

Display

000-

000-

001-43,22, d

002- 42 3

4 003- 4
mi WSIZE

' 004- 42 44

I

HEX
|

005- 23
A 006- A
ISTOIIII 007- 44 32

008-
| ENTER

|

009- 36

010- 43,22,

IRCLIIUH 011- 45 31

Unsigned mode for

adding bits.

Word size four bits.

Stores number of top

register (RA) in Rj.

Initializes checksum
to 0.

Start of summing loop.

(Enables stack lift.)

Recalls contents of

current register whose
number is stored in Rj.

92 Section 9: Program Branching and Controls

Keystrokes Display

mflBl 012- 43 7 Sums the bits in the

X-register.

01 3- 40 Adds this sum to least

significant part of

current checksum. Might
set carry flag.

\xiy
\

014- 34 Brings most significant

part of current checksum
into X.

015-0 Places in X.

rgl lRLCl 016- 43 C Places a 1 into X if a

carry was generated in

the preceding addition.

017-40 Adds carry bit to most
significant part of

checksum.

\x\y\ 018- 34 Returns least significant

part of checksum to X.

RTllDSZl 019- 43 23 Decrements the current

register number stored in

R,.

[GTO lO 020- 22 If register number in R!

is not yet zero, then

continues with loop.

TlfRTNl 021- 43 21

Now, calculate an updated checksum (bit summation) given the

following 4-bit hexadecimal values in R
x
through RA :

R,: A R 3 :
B R 5 : 3 R 7 :

A R9 : D
R 2 :

7 R 4 : 1 R 6 :
D R8 :

2 R A : 6

Keystrokes Display (I
STATUS

|

: 0-04-0000)

|"1T]| P/R

I

Returns to Run mode.

HEX

A | STO

1

1 A h Store the above values in

:
:

Rj through RA .

6 1 STO |A 6 h

Section 9: Program Branching and Controls 93

Keystrokes Display

|GSB| D 6 h Least significant bits of

double-word checksum.

\xiy\ 1 h Most significant bits:

sum of bits in above
pattern is 16 16 or 22 10 .

When writing or analyzing a program, it is often helpful to use a
diagram showing the contents of the stack before and after each
instruction. The stack diagrams below show the movement of the
stack contents in the loop portion ((TbT) 0: lines 010 through 019) of
the above program.

On the eighth iteration of this loop, the carry is set in step 013 when
the checksum for the contents ofR3 is added to the prior checksum
(equalling E, 6), thereby exceeding a single word size. This iteration

is shown here. (The A in the T- and Z-registers is a remnant from
lines 006 and 007.)

Line+
Ri

OH

3

) 011

3

T A A

Z A

Y E

X E b

Keys+ flTl ll-BLl O [RCLHTiT

012 013 014

3 3 3

A A A

A A

E 1

3 1

Line 012 does a checksum of the contents of the register currently
addressed by Rh and line 013 adds this checksum to the least

significant part of the checksum. Lines 014 to 017 add in the carry
bit from the previous add to the most significant word of the
checksum.

94 Section 9: Program Branching and Controls

Line* 01

E

016 on 01 £ 019

Ri 3 3 3 3 2

T A A A A A

Z 1 1 A A A

Y 1 1 1

X 1 1 1 1

Keys* o
I
g :[rlc \xiy\ I g IIdsz

Line 019 decrements the storage register address in R T so the next

loop will sum bits from a new register.

Further Information

Subroutines

Execution. The go to subroutine instruction, |GSB| label, is a

simple branch with a special trait: it establishes a pending return

condition. Program execution, once transferred to the line

containing the designated label, continues until the first

subsequent
I
RTN

|
instruction is encountered— at which point

execution transfers back to the instruction immediately following

the corresponding I
GSB

|
instruction.

Subroutine Execution

Program

Start

QD [lbl] c

/

GDtUDi

Execution

transfers to

line 000
and halts.

[GSBl 1

fTI I
RTN

|

END

/

X
\
\ 9 RTN

RETURN

Execution

returns to

original

routine.

Section 9: Program Branching and Controls 95

Nesting. Subroutine "nesting"—the execution of a subroutine

within a subroutine—is limited to a nest of subroutine returns four

levels deep (not counting the main program level).

If you attempt to call a subroutine nested more than four levels

deep, the calculator will halt and display Error 5 when it

encounters the
I
GSB

|
at the fifth level. Note that there is no

limitation (other than memory size) to the number of nonnested
subroutines or sets of nested subroutines that you may use.

Program Versus Keyboard Use of
|
GSB

|
.

The
I
GSB

|
key is used for two different functions: 1) to execute

programs from the keyboard, and 2) to call subroutines within a

running program. Note that when
I
GSB

|
is used from the keyboard

to execute a program, it does not establish pending subroutine

returns. When a I RTN

1

is subsequently encountered, program
execution halts and returns to line 000—unless there were
intervening programmed

I
GSB

|
instructions (subroutine calls).

Appendix A

Errors and Flags

Error Conditions

If you attempt an operation containing an improper parameter-
such as referencing a nonexistent flag number—the display shows
Error and a number. To clear an error display, press any one key.

This also restores the display that existed prior to the error

message. Below is a list of error conditions by number.

Error 0: Improper Mathematical Operation

[*). where x = 0.

I RMD

|

, where* = 0.

I DBL-H , where:

• x = 0.

• the quotient exceeds a single word size.

I DBLR

1

, where:

• x = 0.

• the quotient exceeds 64 bits.

\Jx I . where x<0.
1
1/x| , where x — (Floating-Point Decimal mode only).

Error 1 : Improper Flag, Window,
|
FLOAT

I , or |GTO| p
Number

Attempted flag number greater than 5.

Attempted window number greater than 7.

Attempted
I
FLOAT

|
number greater than 9.

Attempted I GTO
IR digit greater than 9.

96

Appendix A: Errors and Flags 97

Error 2: Improper Bit Number

|
MASKL

1
or

|
MASKR

| , where \x\> current word size.

|RLn|or
|
RRn |, where

|

x \ > current word size.

|RLCn| or |RRCn|
, where \x\> (current word size +1).

I
SB |, |

CB
| , or [|?) , where

|

x
|
3* current word size.

IWSlZEl , where | > 64.

Error 3: Improper Register Number
Storage register named is nonexistent.

Error 4: Improper Label or Line Number Call

Label or line number called is nonexistent. Attempted to load more
than 203 program lines.

Error 5: Subroutine Level Too Deep

Subroutine nested more than four deep.

Error 6: Invalid Register Contents

In Floating-Point Decimal mode, an attempt was made to recall the
contents of a storage register (including R

r) whose contents are not
in floating-point decimal format.

In Floating-Point Decimal mode,
I
DSZ

I

or Qsz] was used when the
contents of Rj were not in floating-point format.

Error 9: Service

Self-test discovered circuitry problem, or wrong key pressed during
key test. Refer to appendix C.

Pr Error (Power Error)

Continuous Memory interrupted and reset because of power failure.

98 Appendix A: Errors and Flags

Functions That Affect Flags

Two important flags, the carry flag (4) and the out-of-range flag (5),

are affected (set or cleared) by certain arithmetic and shifting

functions in Integer mode. These functions are listed below.

X = sets or clears = always clears — = no effect

Function
Effect On Registers Used:

Carry (4) Out-Of-Range (5) Operand(s) Result

E X X* X,Y X

X X* X,Y X

X* X,Y X

a X X* X, Y X

X — X X

|DBLx| X, Y X,Y

|DBLr| X X, Y, Z X

j
ABS

|

_ X X X

|
CHS

|

— X X X

[ID X X X

[SRl X X X

[ASRl X X X

m X X X

X X X

|rlc] X X X

|
RRC

|

X X X

iRLnl X X,Y X

,
RRn X X,Y X

|RLCn| X X,Y X

|RRCn| X X,Y X

* Also in Floating-Point Decimal mode.

Appendix B

Classes ofOperations

Operations Terminating Digit Entry
Most operations on the calculator, whether executed as instruc-
tions in a program or pressed from the keyboard, terminate digit
entry. This means that the calculator knows that any digits you
key in after any of these operations are part of a new number.

The digit entry operations do not terminate digit entry. They are:

{0} through {9} Q [chs] in Floating Point mode
[A] through [T] ITexI [BSP]

Operations Affecting Stack Lift

There are three types of operations on the calculator based on how
they affect stack lift. These are stack-disabling operations, stack-
enabling operations, and neutral operations.

Disabling Operations

There are two stack lift-disabling functions on the HP-16C. These
operations disable stack lift so that a number keyed in after one of
these operations writes over the current number in the X-register
and the stack does not lift. These operations are:

I
ENTER

| fcETI *

• And
| BSPl if digit entry has been terminated.

99

1 00 Appendix B: Classes of Operations

Neutral Operations

Many operations are neutral—they do not alter the previous status

of the stack lift, whether enabled or disabled.

The following operations are neutral with regard to stack lift.*

|
HEX

I
|
WINDOW

|
| MEM

I

fPECl [<],[>] I
STATUS

|
[R7S

fOCfl fGTOin nnn CLEAR [PREFlxl

[bin! ITvrI CLEAR [REGl

SHOWi rHEXl , rDECl ,
|OCT|

,
|BINl l

SETCOMPLirm. r^H . IUNSGNl l

1
FLOAT

|
(when in Floating Point mode)

Enabling Operations

Most calculator operations are stack lift-enabling. A number keyed

in after one of these operations will lift the stack (because the stack

has been "enabled" to lift).

All operations not listed above as disabling or neutral are

enabling.

Operations Affecting the LAST X Register

The following operations save x in the LAST X register:

| RMD
|

|XOR
|

[ABS| flj] |RLCn[|RLC| [SB]
|
RRn

|

|
DBLx

|
|
NOT

j
["VTI |

ASR
|

|
RRCn

| |
RRC|

| CB]
(W)

lDBL^-1 [OR] [17x1 [RLl [ST] [MASKLj fB?1 | CHS
|

f

[£] [
DBLR

|
fANDl IWSIZEl [RRI [SRI |MASKR| |RLnj

Executing the
I
FLOAT

|
function from Integer mode clears the

LAST X register.

* Also: the digit entry operations are neutral before termination of digit entry.

^In Integer mode.

Appendix B: Classes of Operations 1 01

Operations Affecting Scrolling
The following operations do not reset scrolling, that is, they do not
restore window to the display. All other operations do reset
scrolling.

EJ.E EZS fPSEl fssTI

roNi fLBLl [r7s~1 fBSTl

|STO| [RTNl
|
GSB

|
|DSZ|

I
MEM

| HE1,[cf1,(e] |GTO| Rszl

I
STATUS

SHOW {(current base)| CLEAR
| \
PRGM |, fREGl . [prefix]}

{x&fi ,
[7<o]

, |7>7J , [7>o] , [7?7J ,
{^Wo}\7^]

,
[7=o]

Prefix Keys
The prefix keys on the HP-16C are:

E Um] [IE [no fofoin
QD |RCL| fCFl [GSBl

I
FLOAT

| | WINDOW 1 [W\ [GJO]

Operations Not Active
in Floating-Point Decimal Mode

[si] m iMASKLl {SB} |not|O I

RRC 1 IMASKRI Lqb] [ORl

fSRl HkD I

RMD
| (3

|ASR|

m
[RLC]

|RLCn|
I DBLR

|

|WSIZE|

|RRn| |DBL*| |XOR| (AjtoE
|RRCn| |DBLx| |and|

show {[hex], [dec], [oct], (JTrJJj

The only operations not active in Integer mode are, fEEXl . and
[T77J.

Appendix C

Battery, Warranty,
and Service Information

Batteries

The HP-16C is powered by three batteries. In "typical" use, the

HP-16C has been designed to operate six months or more on a set of

alkaline batteries. The batteries supplied with the calculator are

alkaline, but silver-oxide batteries (which should last twice as long)

can also be used.

A set of three fresh alkaline batteries will provide at least 80 hours

of continuous program running (the most power-consuming kind of

calculator use*). A set of three fresh silver-oxide batteries will

provide at least 180 hours of continuous program running. If the

calculator is being used to perform operations other than running

programs, it uses much less power. When only the display is on—
that is, if you are not pressing keys or running programs—very

little power is consumed.

If the calculator remains turned off, a set of fresh batteries will

preserve the contents of Continuous Memory for as long as the

batteries would last outside of the calculator—at least IV2 years for

alkaline batteries or at least 2 years for silver-oxide batteries.

The actual lifetime of the batteries depends on how often you use

the calculator, whether you use it more for running programs or

more for manual calculations, and which functions you use.*

The batteries supplied with the calculator, as well as the batteries

listed below for replacement, are not rechargeable.

•Power consumption in the HP-16C depends on the mode of calculator use: off (with

Continuous Memory preserved); idle (with only the display on); or "operating" (running

a program, performing a calculation, or having a key pressed). While the calculator is

turned on, typical calculator use is a mixture of idle time and "operating" time.

Therefore, the actual lifetime of the batteries depends on how much time the calculator

spends in each of the three modes.

102

Appendix C: Battery, Warranty, and Service Information 1 03

WARNING
Do not attempt to recharge the batteries; do not store
batteries near a source of high heat; do not dispose of
batteries in fire. Doing so may cause the batteries to leak or
explode.

The following batteries are recommended for replacement in your
HP-16C. Not all batteries are available in all countries.

Alkaline Silver Oxide

EvereadyA76* Eveready357*

Low-Power Indication

An asterisk (*) flashing in the lower left corner of the display when
the calculator is on signifies that the available battery power is
running low.

With alkaline batteries installed:

• The calculator can be used for at least 2 hours of continuous
program running after the asterisk first appears. +

• If the calculator remains turned off, the contents of its

Continuous Memory will be preserved for at least 1 month
after the asterisk first appears.

With silver-oxide batteries installed:

• The calculator can be used for at least 15 minutes of
continuous program running after the asterisk first appears, t

• If the calculator remains turned off, the contents of its
Continuous Memory will be preserved for at least 1 week after
the asterisk first appears.

* Not available in the United Kingdom or Republic of Ireland.

+ Note that this time is the minimum available for continuous program running—that is,
while continuously "operating" (as described in the footnote on the preceding page). If
you are using the calculator for manual calculations—a mixture of the idle and
"operating" modes-the calculator can be used for a much longer time after the asterisk
first appears.

UCAR A76
RAY-O-VAC RW82
National or Panasonic LR44
Varta 4276

UCAR 357

RAY-O-VAC RS76 or RW42
Duracell MS76 or 10L14
Varta 541

1 04 Appendix C: Battery, Warranty, and Service Information

Installing New Batteries

The contents of the calculator's Continuous Memory are preserved

for a short time while the batteries are out of the calculator

(provided that you turn off the calculator before removing the

batteries). This allows you ample time to replace the batteries

without losing data or programs. If the batteries are left out of the

calculator for an extended period, the contents of Continuous

Memory may be lost.

To install new batteries, use the following procedure:

1. Be sure the calculator is off.

2. Holding the calculator as

shown, press outward on the

battery compartment door

until it opens slightly.

3. Grasp the outer edge of the

battery compartment door,

then tilt it up and out of the

calculator.

Note: In the next two steps, be careful

not to press any keys while batteries

are not in the calculator. If you do so,

the contents of Continuous Memory

may be lost and keyboard control may

be lost (that is, it will not respond to

keystrokes).

4. Turn the calculator over and

gently shake, allowing the

batteries to fall into the palm

of your hand.

Appendix C: Battery, Warranty, and Service Information 1 05

CAUTION

In the next step, replace all three batteries with fresh ones. If

you leave an old battery inside, it may leak. Furthermore, be
careful not to insert the batteries backwards. If you do so, the

contents of Continuous Memory may be lost and the

batteries may be damaged.

5.

6.

7.

Holding open the two plastic

flaps shielding the battery

compartment, insert three new
batteries. The batteries should

be positioned with their flat

sides (the sides marked +)
facing toward the nearby rub-

ber foot, as shown in the

illustration on the calculator

case.

Insert the tab of the battery

compartment door into the slot

in the calculator case.

Lower the battery compart-

ment door until it is flush with

the case, then push the door

inward until it is tightly shut.

Turn the calculator on. If for

any reason Continuous Mem-
ory has been reset (that is, its

contents have been lost), the

display will show Pr Error.

Pressing any key will clear

this message from the display.

1 06 Appendix C: Battery, Warranty, and Service Information

Verifying Proper Operation (Self-Tests)

If it appears that the calculator will not turn on or otherwise is not

operating properly, review the following steps.

For a calculator that does not respond to keystrokes:

1. Press the [p] and
I
ON

| keys simultaneously, then release

them. This will alter the contents of the X-register, so clear

the X-register afterward.

2. If the calculator still does not respond to keystrokes, remove

and reinsert the batteries. Make sure the batteries are

properly positioned in the compartment.

3. If the calculator still does not respond to keystrokes, leave

the batteries in the compartment and short both battery

terminals together. (Fold back the plastic flaps to expose the

terminals, which are the metal strips on either side of the

battery compartment.) Only momentary contact is required.

After you do this, the contents of Continuous Memory will be

lost, and you may need to press the ION
|
key more than once

to turn the calculator back on.

4. If the calculator still does not turn on, install fresh batteries.

If there is still no response, the calculator requires service.

For a calculator that does respond to keystrokes:

1. With the calculator off, hold down the [ON
|
key and press [x].

2. Release the
I

ON
|
key, then release the key. This initiates a

complete test of the calculator's electronic circuitry. If

everything is working correctly, within about 15 seconds
(during which the word running flashes) the display should

show -8,8,8,8,8.8,8,8,8,8, and all of the status indicators

(except the * low-power indicator) should turn on.* If the

display shows Error 9, goes blank, or otherwise does not

show the proper result, the calculator requires service.*

•The status indicators turned on at theend of this test include some that normally are not

displayed on the HP-16C.

t If the calculator displays Error 9 as a result of the
I
ON

I
/[*] test or the

I
ON

| /f*1 test, but

you wish to continue using your calculator, you should reset Continuous Memory as

described on page 20.

Appendix C: Battery, Warranty, and Service Information 1 07

Note: Tests of the calculator's electronics are also per-

formed if the [+] key or the {*} key is held down when
|
ON

I
is

released. *t These tests are included in the calculator to be

used in verifying that it is operating properly during

manufacture and service.

If you had suspected that the calculator was not working properly

but the proper display was obtained in step 2, it is likely that you
made an error in operating the calculator. We suggest you reread
the section in this handbook applicable to your calculation. If you
still experience difficulty, write or telephone Hewlett-Packard at an
address or phone number listed under Service (page 110).

* If the calculator displays Error 9 as a result of the | ON | / [xl test or the | ON |
/ [JJ test, but

you wish to continue using your calculator, you should reset Continuous Memory as

described on page 20.

+ The | ON |
/ r*~| combination initiates a test that is similar to that described above, but

continues indefinitely. The test can be terminated by pressing any key, which will halt

the test within 15 seconds. The
|
ON

|

/|T) combination initiates a test of the keyboard and
the display. When the | ON | key is released, certain segments in the display will be lit. To
run the test, the keys are pressed in order from left to right along each row, from the top

row to the bottom row. As each key is pressed, different segments in the display are lit. If

the calculator is operating properly and all the keys are pressed in the proper order, the

calculator will display 16 after the last key is pressed. (The
|
ENTER

|
key should be

pressed both with the third-row keys and with the fourth-row keys.) If the calculator is

not working properly, or if a key is pressed out of order, the calculator will display

Error 9. Note that if this error display results from an incorrect key being pressed, this

does not indicate that your calculator requires service. This test can be terminated by

pressing any key out of order (which will, of course, result in the Error 9 display). Both
the Error 9 display and the 1 6 display can be cleared by pressing any key.

1 08 Appendix C: Battery, Warranty, and Service Information

Limited One-Year Warranty

What We Will Do

The HP-16C is warranted by Hewlett-Packard against defects in

material and workmanship for one year from the date of original

purchase. If you sell your unit or give it as a gift, the warranty is

automatically transferred to the new owner and remains in effect

for the original one-year period. During the warranty period, we
will repair or, at our option, replace at no charge a product that

proves to be defective, provided you return the product, shipping

prepaid, to a Hewlett-Packard service center.

What Is Not Covered

This warranty does not apply if the product has been damaged by

accident or misuse or as the result of service or modification by
other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a

product is your exclusive remedy. ANY OTHER IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS IS
LIMITED TO THE ONE-YEAR DURATION OF THIS
WRITTEN WARRANTY. Some states, provinces, or countries do
not allow limitations on how long an implied warranty lasts, so the

above limitation may not apply to you. IN NO EVENT SHALL
HEWLETT-PACKARD COMPANY BE LIABLE FOR CON-
SEQUENTIAL DAMAGES. Some states, provinces, or countries

do not allow the exclusion or limitation of incidental or

consequential damages, so the above limitation or exclusion may
not apply to you.

This warranty gives you specific legal rights, and you may also

have other rights which vary from state to state, province to

province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall

not affect the statutory rights of a consumer. In relation to such
transactions, the rights and obligations of Seller and Buyer shall

be determined by statute.

Appendix C: Battery, Warranty, and Service Information 1 09

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the
time of manufacture. Hewlett-Packard shall have no obligation to

modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please
contact:

• In the United States:

Hewlett-Packard

Corvallis Division

1 000 N.E. Circle Blvd.

Corvallis, OR 97330
Telephone: (503) 758-1010

Toil-Free Number: (800) 547-3400 (except in

Oregon, Hawaii, and Alaska)

• In Europe:

Hewlett-Packard S.A.

7, rue du Bois-du-Lan

P.O. Box

CH-1217Meyrin2
Geneva

Switzerland

Telephone: (022) 83 81 11

Note: Do not send calculators to this address for repair.

• In other countries:

Hewlett-Packard Intercontinental

3495 Deer Creek Rd.

Palo Alto, California 94304
U.S.A.

Telephone: (415)857-1501

Note: Do not send calculators to this address for repair.

110 Appendix C: Battery, Warranty, and Service Information

Service

Hewlett-Packard maintains service centers in most major coun-

tries throughout the world. You may have your unit repaired at a

Hewlett-Packard service center any time it needs service, whether

the unit is under warranty or not. There is a charge for repairs after

the one-year warranty period.

Hewlett-Packard calculator products normally are repaired and
reshipped within five (5) working days of receipt at any service

center. This is an average time and could vary depending upon the

time of year and work load at the service center. The total time you

are without your unit will depend largely on the shipping time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for handheld

and portable calculator products is located in Corvallis, Oregon:

Hewlett-Packard Company
Corvallis Division Service Department

P.O. Box 999/1 000 N.E. Circle Blvd.

Corvallis, Oregon 97330, U.S.A.

Telephone: (503) 757-2000

Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For

countries not listed, contact the dealer where you purchased your

calculator.

AUSTRIA EASTERN EUROPE
HEWLETT-PACKARD GmbH Refer to the address listed under Austria

Wagramerstr.-Lieblgasse

A 1220 VIENNA
Telephone: (222) 23 65 11 FINLAND

HEWLETT-PACKARD OY
Revontulentie 7

SF 02100 ESPOO 10(Helsinki]

Telephone: (90) 455 02 11

BELGIUM
HEWLETT-PACKARD BELGIUM SA/NV
Boulevard de la Woluwe 100

Woluwelaan

B 1200 BRUSSELS
Telephone: (2) 762 32 00 FRANCE
DENMARK HEWLETT-PACKARD FRANCE
HEWLETT-PACKARD A/S S.A.V. Calculateurs de Poche

Datavej 52 Division Informatique Personnelle

DK 3460 BIRKEROD (Copenhagen) F 91947 LES ULIX CEDEX

Telephone: (02) 81 66 40 Telephone: (6) 907 78 25

Appendix C: Battery, Warranty, and Service Information 111

GERMANY
HEWLETT-PACKARD GmbH
Vertriebszentrale

Berner Strasse 1 17

Postfach 560 140

D 6000 FRANKFURT 56

Telephone: (61 1) 50041

ITALY

HEWLETT-PACKARD ITALIANA S P A.

Casella postale 3645 (Milano)

ViaG.DiVittorio. 9

I 20063 CERNUSCO SUL NAVIGLIO (Milan)

Telephone: (2) 90 36 91

NETHERLANDS
HEWLETT-PACKARD NEDERLAND B V
Van Heuven Goedhartlaan 121

NL 1 1 81 KK AMSTELVEEN (Amsterdam)

P.O. Box 667

Telephone: (020) 472021

NORWAY
HEWLETT-PACKARD NORGE A/S
P.O. Box 34

Oesterndalen 18

N 1 345 OESTERAAS (Oslo)

Telephone: (2) 17 11 80

SPAIN
HEWLETT-PACKARD ESPANOLA S.A.

Calle Jerez 3

E MADRID 16

Telephone: (1)458 2600

SWEDEN
HEWLETT-PACKARD SVERIGE AB
Enighetsvagen 3

Box 205 02

S 1 61 BROMMA 20 (Stockholm)

Telephone: (8) 730 05 50

SWITZERLAND
HEWLETT-PACKARD (SCHWEIZ) AG
Allmend2

CH 8967 WIDEN
Telephone: (057) 501 11

UNITED KINGDOM
HEWLETT-PACKARD Ltd

King Street Lane

Winnersh, Wokingham
GB BERKSHIRE RG11 5AR
Telephone: (734) 784774

International Service Information

Not all Hewlett-Packard service centers offer service for all models
of HP calculator products. However, if you bought your product
from an authorized Hewlett-Packard dealer, you can be sure that
service is available in the country where you bought it.

If you happen to be outside of the country where you bought your
unit, you can contact the local Hewlett-Packard service center to

see if service is available for it. If service is unavailable, please ship
the unit to the address listed above under Obtaining Repair Service
in the United States. A list of service centers for other countries can
be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are
your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The
repair charges include all labor and materials. In the United
States, the full charge is subject to the customer's local sales tax. In

112 Appendix C: Battery, Warranty, and Service Information

European countries, the full charge is subject to Value Added Tax
(VAT) and similar taxes wherever applicable. All such taxes will

appear as separate items on invoiced amounts.

Calculator products damaged by accident or misuse are not

covered by the fixed repair charges. In these situations, repair

charges will be individually determined based on time and

material.

Service Warranty

Any out-of-warranty repairs are warranted against defects in

materials and workmanship for a period of 90 days from date of

service.

Shipping Instructions

Should your unit require service, return it with the following items:

• A completed Service Card, including a description of the

problem.

• A sales receipt or other proof of purchase date if the one-year

warranty has not expired.

The product, the Service Card, a brief description of the problem,

and (if required) the proof of purchase should be packaged in the

original shipping case or other adequate protective packaging to

prevent in-transit damage. Such damage is not covered by the one-

year limited warranty; Hewlett-Packard suggests that you insure

the shipment to the service center. The packaged unit should be

shipped to the nearest Hewlett-Packard designated collection point

or service center. Contact your dealer for assistance. (If you are not

in the country where you originally purchased the unit, refer to

International Service Information, above.)

Whether the unit is under warranty or not, it is your responsibility

to pay shipping charges for delivery to the Hewlett-Packard service

center.

After warranty repairs are completed, the service center returns the

unit with postage prepaid. On out-of-warranty repairs in the

United States and some other countries, the unit is returned C.O.D.

(covering shipping costs and the service charge).

Appendix C: Battery,Warranty, and Service Information 113

Further Information

Service contracts are not available. Calculator product circuitry

and design are proprietary to Hewlett-Packard, and service

manuals are not available to customers.

Should other problems or questions arise regarding repairs, please

call your nearest Hewlett-Packard service center.

Programming and Applications Assistance

Should you need technical assistance concerning programming,
applications, etc., call Hewlett-Packard Customer Support at

(503) 757-2000. This is not a toll-free number, and we regret that we
cannot accept collect calls. As an alternative, you may write to:

Hewlett-Packard

Corvallis Division Customer Support

1000N.E. Circle Blvd.

Corvallis, OR 97330

Dealer and Product Information

For dealer locations, product information, and prices, please call

(800) 547-3400. In Oregon, Alaska, or Hawaii, call (503) 758-1010.

Temperature Specifications

• Operating: 0° to 55°C (32° to 131°F)

• Storage: -40° to 65°C (-40° to 149° F)

Potential for Radio and Television

Interference (for U.S.A. Only)

The HP-16C generates and uses radio frequency energy and if not

installed and used properly, that is, in strict accordance with the

manufacturer's instructions, may cause interference to radio and
television reception. It has been type tested and found to comply
with the limits for a Class B computing device in accordance with

the specifications in Subpart J of Part 15 of FCC Rules, which are

designed to provide reasonable protection against such inter-

ference in a residential installation. However, there is no guarantee

that interference will not occur in a particular installation. If your

HP-16C does cause interference to radio or television reception, you

114 Appendix C: Battery, Warranty, and Service Information

are encouraged to try to correct the interference by one or more of
the following measures:

• Reorient the receiving antenna.

• Relocate the calculator with respect to the receiver.

• Move the calculator away from the receiver.

If necessary, you should consult your dealer or an experienced

radio/television technician for additional suggestions. You may
find the following booklet prepared by the Federal Communica-
tions Commission helpful: How to Identify and Resolve Radio-TV
Interference Problems. This booklet is available from the U.S.

Government Printing Office, Washington, D.C. 20402, Stock No.
004-000-00345-4.

Appendix D

Programs for Format Conversion

Different computing machines use various formats for repre-

senting numbers. Consequently, it is often necessary to convert

numbers from one format to another. This appendix provides two

programs to convert numbers between the proposed IEEE
standard floating-point binary format and the floating-point

decimal format used in the HP-16C. *

Formats

The proposed IEEE single-precision, floating-point binary format

31 30 23 22

in a 32-bit format with 1-bit sign s,

8-bit biased exponent e, and
23-bit fraction f.

The value o of a number x (the contents of the X-register) is

interpreted as follows:

(a) If e = 255 and /"# 0, then v = NaN (not a number).

(b) Ife = 255 and /=(), then v = (-iy°°.

(c) If < e < 255, then u = (-l)s 2(e
"127)

(l.f).

(d) Ife = and 0, then v = (-l)
s 2(

"126)
(0./).

(e) Ife = Oand /•=(), then u = (-l)
s
0.

In Floating-Point Decimal mode on the HP-16C, the following

conventions are used:

•The standard for the floating-point binary format is a proposal of the IEEE Computer

Society's Floating-Point Committee, Task 754. It has been set forth in Computer, March

1981, pages 51-62.

115

116 Appendix D: Programs for Format Conversion

IEEE Number X-R eaister
Carry Out-of-Range

(Flag 4) (Flag 5)

-0
1

±oo ±9.999999999 X 10" 1 1

Other Numbers As defined above under

(c)and(d)

Not a Number MHO./) 2
23

1

Program: Conversion from IEEE Format to HP-1 6C Format
The following program converts a number from IEEE single-

precision, floating-point binary format to floating-point decimal
format.

KEYSTROKES DISPLAY KEYSTROKES DISPLAY

f~g~ll LBL(B 001-43,22, b sm 018- 34

[HEX] 002- 23 8 019- 8

GQSET COMPLY 003- 42 2 |f || MASKLl 020- 42 7

2 004- 2 I9l|x = y| 021- 43 49

005- ;gto i4 022- 22 4

I

f || WSIZE
|

006- 42 44 [IB 023- 33

ecu: 007- 42 A lflll«-ol 024- 43 40

| ENTER

|

008- 36 [gtoI 3 025- 22 3

| ENTER

|

009- 36 tun 026- 34

|g|U-ol 010- 43 40 1 027- 1

fGTOl2 011- 22 2 8 028- 8

1 012- 1 am] 029- 42 4

8 013- 8 (T][L|L]1 030-43,22, 1

If II MASKR | 014- 42 8 EMM 031-43, 6, 4

IfllANDI 015- 42 20
I
CHS

|
032- 49

IfllXORI 016- 42 10 033- 34

IflllLSTxl 017- 43 36 8 034- 8

Appendix D: Programs for Format Conversion 117

KEYSTROKES DISPLAY KEYSTROKES DISPLAY

miRLnl 035- 42 E lOHCLxl 051- 43 35

9 036- 9 052- 43

7 037- 7 |GTO|5 053- 22 5

s 038- 30 1 054- 1

EMM 039-43, 5. 4 4 055- 4

I9IILBLI2 040-43,22, 2 5 056- 5

If II FLOAT II-

1

041-42,45,48 | ENTER

|

057- 36

ITirRTNl 042- 43 21 [g][LBp5 058-43,22, 5

fgirLBLi3 043-43,22, 3 S2 059- 34

1 044- 1 E3HZM 060-43, 6, 4

8 045- 8 ICHSl 061- 49

am] 046- 42 4 I8IIASRI 062- 43 b

047- 34 \xjy\ 063- 34

I
GTO |

1

048- 22 1 EJLIEM 064-43, 4, 4

I9IILBL14 049-43,22, 4
I
GTO 1

2

065- 22 2

EE 050- 33

Examples:

Keystrokes

[HEX! 80000000

RssbIb

rHEX|7F800000

[GSEtl B

[HEXj 00800000

[GSBlB

[HEX! 3 F800001

GSB B

|T) CLEAR fPREFIX
|

Display

80000000 h

0.000000 00

9.999999 99

1.175494-38

1.000000 00
1000000119

(I
STATUS I : 2-32-0000)

-0.

C set.

+°°.

C and G set.

2
_126 X(1.00...00).

2°X(1.00...01) = l + 2- ;23

118 Appendix D: Programs for Format Conversion

Program: Conversion from HP-1 6C Format to IEEE Format

The following program converts a number from Decimal Floating-

Point mode to IEEE single-precision floating-point binary format.

Flag 5 (out-of-range) is set if ±°° is the result. (The labels used in

this program are different from those in program 1 so that both

programs may be in memory at the same time.)

KEYSTROKES DISPLAY KEYSTROKES DISPLAY

(HIHD A 001-43.22. A 025-

ffl SET COMPLY 002- 42 2 If || WSIZE
|

026- 42 44

[HEX] 003- 23 8 027- 8

004-43, 5, 4 028-

nn rcFis 005-43, 5, 5 [+
|

029- 40

nnix=>i 006- 43 49 1 030- 1

[9 II
RTN 007- 43 21 8 031- 8

9 008- 9 If II MASKLl 032- 42 7

D 009- d If IIANDI 033- 42 20

H 010- 40 [91134 034-43, 6, 4

|x5y| 011- 34 035- 43 24

012-43, 5. BHD 036- 42 A

l8llx<0l 013- 43 2 TcU]l 037- 45 32

[U[lE]o 014-43, 4, F 038- F

1 9 IIABSI 015- 43 8 F 039- F

S3 016- 34 |9||x>>| 040- 43 3

1
9 ||x<0| 017- 43 2 |GTOl7 041- 22 7

|GTO|9 018- 22 9 \xjy\ 042- 34

1 019- 1 HE 043- 33

S 020- 40 044- 33

r9lfLBLl6 021-43,22, 6 045- 43 35

[STOll 022- 44 32 GO[EE 046- 43 33

\3+: 023- 33 EDGO 047- 43 33

2 024- 2 EL1E5 048-43, 4, 5

Appendix D: Programs for Forme

KEYSTROKES DISPLAY KEYSTROKES DISPLAY

miLBLl7 049-43,22, 7 rg~iniLi9 062-43,22, 9

EE 050- 33
1 9 llABSl 063- 43 8

mrpRi 051- 42 40 3 064- 3

052-43, 6, 065-

IGSB |8 053- 21 8 I9llx<y | 066- 43 1

9 054- 9 tin] 067- 34

ff]|RRn| 055- 42 F EE 068- 33

056-43. 5, 4 069-

|9||rtn| 057- 43 21 EH) 070- 34

BDQJD8 058-43,22. 8 Sdl] 071- 42 4

8 059- 8 S 072- 10

fJ|_SBJ 060- 42 4 073-

[TlfRTNl 061- 43 21 fGTQ|6 074- 22 6

Examples:

Keystrokes

mrFioATin
8[fpEXl 72

IGSBIA

m fFLOATlR
1.404fflfEEX

45FCHS1

GSBlA

3.141592654

GSB A

Display
(I
STATUS

I : 2-32-0000)

8 72
7F800000 h G set. Overflows to +°°.

1.404 00
1.404 -45

1 h

3.141592654 tt.

40490Fdb h

Function Summary and Index

This section presents a summary of the various calculator

functions with page references. The functions are presented in the

following groups:

rONl Page 120

Clearing Page 120

Digit Entry Page 120
Stack Rearrangement Page 121

Number and Display Control Page 121

Mathematics Page 121

Bit Manipulation Page 122
Memory and Storage Page 123

Index hegister Control Page 123
Programming Page 123
Conditionals Page 124

lONjTurnsthe

calculator's display

on and off (page 1 6).

Also used with EJto

reset Continuous

Memory (page 20),

with to change the

digit separator (page

61), and with other

keys to test the cal-

culator's operation

(page 106).

Clearing

bsp Backspace. In

Run mode: clears

last digit; clears

whole display if digit

entry was terminated

(page 17). In

Program mode:

deletes the current

instruction (page

83).

l v Clear X. Clears

contents of X-register

to zero (page 17).

CLEAR I
PRGM iCIear

program memory. In

Run mode: reposi-

tions program

memory to line 000

without deleting

lines. In Program

mode: deletes all

program memory
(page 73).

CLEAR FregI Clear

registers. Clears all

data storage

registers (page 68).

CLEAR PREFIX

Cancel prefix entry.

Cancels any prefix

keystroke from a

partially entered key

sequence (page 17).

Also temporarily

displays the full 10-

digit mantissa of the

number in the X-

register (Floating-

Point Decimal mode
only) (page 58).

Digit Entry

[ojthrough GE),S
through digit keys.

Can be used only in

the proper number
base mode (page

28).

. !
Decimal point.

Used in Floating-

Point Decimal mode
only (page 58).

[ENTER
[Copies the

number in the X-

register into the Y-

120

Function Summary and Index 121

register, terminates

digit entry and

disables the stack.

Used to separate

multiple number
entries (page 22).

[CHSJ Change sign.

Returns the appropri-

ate complement or

negative of the

number in the X-

register (pages 30
and 58).

I
EEX

[
Enter exponent.

Used only in

Floating-Point

Decimal mode; digits

keyed in following

I EEX
|
are considered

exponents of 1

(page 58).

Stack

Rearrangement

I
xj.y

|
X exchange Y.

Exchanges contents

of X-and Y-stack

registers (page 23).

|R*|
, |Rf[Rolldown.

roll up. Rolls

contents of stack up
or down one register

(page 23).

Number and
Display Control

I HEX I , fDECirOCTl .

1
BIN

|
Number base

modes. Convert

display to the

specified base in

Integer mode (page
28).

SHOW
{
[HEX], [DEC],

[OCT], (Jin]} Tempo-
rarily display the

contents of the X-

register in the speci-

fied base (page 29).

SET COMPL {[Til ,

|2's| I UNSGN
i l Set

Complement mode.

Establish 1 's Compl.,

2's Compl., or

Unsigned mode for

calculator operation

(page 30).

[wsiZElWord size.

Uses the absolute

value of the number
intheX-register(Oto

64) to specify word
size(1 to 64); the

stack then drops

(page 32).

[WINDOW HQ to 7| Dis-

plays the specified

eight-digit segment
of the number in the

X-register (page 33).

{<],{>} Scroll left,

scroll right. Scrolls

the number in the

display one digit to

the left or right to

view obscured digits

(page 33).

[SF] , [CF]Set flag,

clear flag. Sets or

clears the flag

specified (0 to 5)

(page 36).

I
STATUS

[
Temporarily

displays the current

complement mode,

word size, and flag

status (page 37).

I
FLOAT

| (Q to 9,Q}
Establishes Floating-

Point Decimal mode,
displaying the given

number of decimal

places or (with []])

scientific notation.

When going into

Floating Point mode
from Integer mode,

the contents of the

X- and Y-registers

are converted to the

floating-point

decimal equivalent of

(v)(2x)intheX-

register (the rest of

the stack is cleared

(page 56).

Mathematics

B.BE.HArith-
metic operators;

cause the stack to

drop. In Integer

mode,
;

- does not

display the fractional

part (page 41).

122 Function Summary and Index

Remainder.

Calculates |/| MOD|x|

(sign matches y) and

drops the stack (page

43).

\lx
1 . 1 1 /x] Square

root and reciprocal.

Use the value in the

X-register; no stack

movement. 1/x|

works only in

Floating Point mode.

In Integer mode, [vFJ

does not display the

fractional part

(pages 44 and 61).

DBLx . DBL* .
DBLR

Double multiplica-

tion, division, and

remainder. I

DBL>

returns a double-

word sized product in

XandY; and

DBLR
I
take a double-

word sized dividend

in Y and Z (divisor in

X) and return the

result in X (page 52).

ABS
I Absolute value.

Acts on number in X-

register (page 44).

Bit Manipulation

iTI.rSRl Shift left,

shift right. Shifts the

bits in the X-register

one place to the left

or right. A bit shifted

out goes into the

carry; a new bit is

always zero (page

46).

I ASR
!
Arithmetic shift

right. Shifts all bits in

X one place to the

right and replicates

the sign bit on the

left (in 1 's and 2's

Complement modes

only) (page 47).

[ID, [RR] Rotate left,

rotate right. Rotates

the bits in the X-

register one place to

the left or right; a bit

shifted out at one

end of the word re-

enters at the other

end and also goes

into the carry (page

48).

|
RLCLfRRCl Rotate

left through carry,

rotate right through

carry. Rotates bits as

above except that the

bits shifted out "pass

through" the carry

bit before rotating

back into the word

(page 48).

I RLn
1 . 1 RRn

1 . 1 RLCn [.

i
RRCn Multiple

rotation. Rotates

(left/right, through

the carry or not) the

bit pattern in the Y-

register and the

number of places

specified in the X-

register, then drops

the stack, placing the

new pattern in X
(page 49).

QTj] Left-justify. Left-

justifies the word in

the X-register and

places it in the Y-

register. The number
of bit-shifts

necessary for the

justification is placed

in the X-register

(page 47).

| MASKL
| , I
MASKR

[

Mask left or right.

Creates a left- or

right-justified mask
of set bits. The

number of bits is

specified by the

absolute value of the

number in theX-

register (page 50).

[SBl. Feel Set bit,

clear bit. Sets (to 1)

or clears (to 0) a bit-

specified by the

magnitude of the

value in X—in a bit

pattern in Y. (The

stack drops.) Bits are

numbered from zero

to (word size - 1),

where zero is the

least significant bit

(page 50).

Function Summary and Index 123

Number of Bits.

Sums the bits in the

X-registerand

returns that sum to

X. The stack does not

move (page 52).

"OR"NOT] _. I ANDl ,

LXORJ Logical

(Boolean) operators.

fOR~1. fANUI . and

operate on the

binary values in the

X- and Y-registers

and return the

Boolean result in the

X-register. (The stack

drops.) uses

only the X-register

(page 44).

Memory and
Storage

I
STO Store. Places a

copy of the number
in the X-register into

the storage register

specified (Oto.F, (T),

) (pages 66, 69)

I RCL Recall. Places a

copy of the number
in the specified

storage register (Oto

-F, [J]. QUI) into the X-

register (pages 66,
69).

\x\l\ . \xn\)\ Direct

and indirect Index

register exchanges.

Refer to Index

Register Control.

iLSTx LASTX
register. Recalls into

the X-register the

number that was in X
before the last

operation (page 23).

em] Memory
status. Temporarily

displays 1)the

number of instruc-

tions which may be
added to program
memory before

another seven lines

are allocated; and 2)

the number of

storage registers

currently available

for data storage

(page 65).

CLEAR fREGl . CLEAR
Clear storage

registers, clear

program memory.
Refer to Clearing,

above.

Index Register

Control

Index register (R,).

Storage register that

also can be used for

indirect program

execution (with

and)and

program loop control

(with .' and !SZ])

(page 68).

Indirect

operations. Used to

indirectly address

any storage register,

and is the only

means to address

those registers above

R F . The Index

register contains the

number of the

storage register

(page 69).

Us I X exchange Rj.

Exchanges the value

in the X-register with

the value in the Index

register (page 69).

Exchanges the

value in theX-

register with that in

the storage register

indirectly addressed

byR, (page 69).

fDSZl.riSZlLooD

counting and control

using Rj. Refer to

Conditionals (page

124).

Programming

I P/R ' Program/Run
mode. Sets the

calculator to Pro-

gram mode, for

entering program

lines, or Run mode,

for running programs
and performing other

operations (page

72).

124 Function Summary and Index

ITblI 10 to F| Label.

Used to access

programs (page 73).

1 RTN

1

Return. Halts

execution of a

running program and

returns position in

program memory to

line 000. If a

subroutine is

running,
I
RTN

|

merely returns

execution to the line

after the

corresponding I GSB
|

instruction (page

74).

| R/S
|
Run/Stop.

Begins or stops

execution at the

current line in

program memory

(page 76).

IPSE
I Pause. Halts

program execution

briefly to display the

X-register contents

(page 75).

programmable (page

82).

GTO label. Transfers

program execution to

the given label. Pro-

grammable (page

87).

IGTOinnnn.

Positions the

calculator to the

existing line number
specified by nnn. Not

|GSB|/a6e/. Goto
subroutine. Within a

program, this

transfers execution

to the given

subroutine, which

returns execution to

the body of the

program when a

I

RTN
[
instruction is

encountered. From

vious program line

(page 82).

Conditionals

[£?], \W\ Flag set? Bit

set? Tests for the flag

or bit specified. If set,

program execution

continues; if cleared,

program execution

skips one line before

continuing (page

89).

the keyboard, 1
GSB

|

is used to start

execution of a

labeled program

(page 87).

[SST] Single step. Pro-

gram mode: moves
calculator forward

one or more lines in

program memory;

scrolls if key is held.

Run mode: displays

and executes the

current program line,

then steps to the

next line to be

executed (page 82).

I
BST| Back step.

Moves calculator

back one line in

program memory
(will also scroll in

Program mode).

Displays line number
and contents of pre-

lx^y| , |
x<0l ,

[x>y| .

x>0| , |x*y| , |x*0| ,

|x = y|, fx^Ol Condi-

tional tests. Each test

compares the value

in the X-register

against zero or the

value in the Y-

register. If the

comparison is true,

program execution

continues; if false,

program execution

skips one line before

continuing (page

88).

[pszl . fiszl

Decrement and skip

if zero, increment

and skip if zero.

Decrements or

increments value in

Index register and

skips execution of

the next program line

//the new index

value equals zero

(page 90).

Subject Index
Page numbers in bold type indicate primary references; page
numbers in regular type indicate secondary references.

A
Abbreviated key sequences, 68
Absolute value

(

|
ABSj), 44

Addition (H), 41-42, 61

Addressing, indirect, 88
Altering program lines, 83-84
Alternate functions, 16
AND, 45, 51

Annunciators, 38
low-power, 38
C,36,39
G,36, 40,81

base, 28, 31

prefix, 17
PRGM, 21

Arithmetic shift, 46

[ASRl.47
Arithmetic, 10-12, 18, 25, 39-44

floating-point, 61
Assistance, technical, 113

B
IWI.52
[BTl.50

Back space(|BSP|), 17-18,83
Back step(|BST|), 82
Base conversions, 28
Base indicators, 28, 31, 33
Batteries, installing, 104-105
Battery life, 102
|W1, 28-29
Binary representation, internal, 29, 35-36
Bit numbering, 50

125

126 Subject Index

Bit summation (f#Bl). 52
example, 90-94

Bit testing, 89
Boolean operators. See Logical operators.

Borrow condition, 42
Branching, conditional, 88-90

indirect, 88
loop, 90
simple (unconditional), 87

Bytes, number in registers, 62-65, 77

C
C annunciator, 36, 39

Calculations, arithmetic, 10-12, 18, 25, 41-44
chain, 19

nested, 25-26
one-number, 18, 25
two-number, 18, 25

Calculator operation, testing, 106-107
Carry bit, 46-48, 49
Carry condition, 36, 39-40, 42-43

floating-point, 61

fell. 50
[CE,37
Chain calculations, 19 ,

25-26

Changing signs (I
CHS

I), 30, 44

in Floating-Point Decimal mode, 58
Checksum example, 90-94
Circular shift. See Rotating operations.

CLEAR keys, 1 7

Clear X([13), 17-18

Clearing

bits, 50
display, 17-18

prefix keys, 17
program memory, 63, 73
programs, 73
storage registers, 68

Complement modes, 29-30
in Floating-Point Decimal mode, 58, 60

Complement status, 37-38
Concatenation example, 72-75, 83-85

Subject Index 127

Conditional tests, 88-89
for bits, 50-51

Constants in calculations, 26-27
Continuous Memory, 19-20

resetting, 20

1)

Data input (programming), 76-77
Data storage. See also Storage registers.

alteration of, 67-68
[dec], 28-29
Default conditions, 20
Deleting program lines, 63, 83, 84
Digit entry, 17-18, 19, 24, 25

operations, 99
Digit separators (display), 61
Disabling operations, 99
Display, 21, 28, 56. See also X-register.

clearing, 17-18
format, in Floating-Point Decimal mode, 58, 61
format, in Integer mode, 28-34
leading zero, 36
window, 31,33

Division (B), 4 1, 61

double QDBL-H), 53-54
Do ifTrue rule, 88-89
Double functions, 52-55
Double multiplication example, 78-80
|DSZ[,90

E

Enabling operations, 100
I
ENTER

I , 18-19,22, 24

Error

conditions, 96-97
display, 20, 38
in a program, 81

Exclusive OR (|~XOR~l), 46
Exponents (fEEXl), 58

128 Subject Index

F

0,16-17
23,37
Flag 3, 36
Flag 4, 36, 39-40, 42-43, 46, 48, 49

Flag 5, 30, 36, 40-41, 43, 44, 59, 61
Flags

numbers, 89
status, 37-38
testing, 89
functions affected by, 98
setting, 37
system, 36, 89

user, 36, 89
Floating-Point Decimal mode,

converting to, 56, 57
display

, 56, 58, 61

I
FLOAT

| , 11,40, 56
non-operative functions, 61, 101
operations not active in, 101
stack conversion, 56-57, 59

Format conversion programs, 115-119
Format, handbook, 2-3

Functions

arithmetic, 39-44
one-number, 18, 24

stack movement, 24-25
two-number, 18, 24

G
GO, 16-17

G annunciator, 36, 40, 81

fGSBl .75,81,87, 94,95
[GTOl .75,87
rGTOin.73. 75,82

H
[hex], 28-29

[Tl.foTK See Index register.

Subject Index 129

I

IEEE floating-point binary format conversion, 1 15

Index register, 68-70
branching with, 88
incrementing/decrementing, 90
storage and recall, 68-70

Indirect addressing, 69
Initializing functions, 85-86
Inserting program lines, 83, 84

Integer mode, 11,28,39

from Floating-Point Decimal mode, 59-60
Interference, radio frequency, 113-114

Internal number storage, 32

flSZl.90

K
Keycodes, 77
Keystroke programming, 72

L
Labels, 73
search for, 80-81

LAST X register

(LS^j, 23-24, 26

operations saved in, 100
fLBLl.73

Left-justify shift, 46, 47

0.47
Logical operators, 44-46
Logical shift, 46-47
Loop counters, 90
Looping example, 90-94
Low-power indication, 38, 103

M
MOD, 43

Mantissa display, 58
Masking (I

MASKL

1

and
I
MASKRp , 51

130 Subject Index

Memory
allocation, 62-66
configuration, example, 64
space, 62

status ([MEMp , 65-66
Memory, Continuous, 19-20
Multiplication (B), 41, 61

double(|DBl_x|), 52-53

N
Negative numbers, 30, 44

floating-point, 58
Nesting subroutines, 95
Neutral operations, 100
Nonprogrammable functions, 81
NOT, 44-45
Number base modes, 10, 28
Number of bits ([#§]), 52
example, 90-94

O
I
OCT

| , 28-29

BSD , 16, 20,61, 106-107

One's Complement (rTs1).29-30. 41, 44, 45
OR, 45
Out-of-range condition, 36, 40-41, 81

floating-point, 59, 61
in a program, 81

Overflow conditions, 40

floating-point, 59

P
Pause (fPSEl), 75
Position in memory, 73, 85

moving, 73, 75, 82
Power, 16
Prefix keys, 17, 101
Program
data entry, 76-77
memory, 62-64, 77

mode, 72

Subject Index 131

clearing, 73
ending a, 74
executing a, 75, 95

loading a, 72-73
recording a, 73-74

Program instructions (lines), 62, 63, 65, 73, 77
deleting, 83, 84

inserting, 83, 84

moving to, 75, 82
Program labels, 73
search for, 80-81

Program stops, 74, 75-76
unprogrammed, 81

R
Recalling numbers (I

RCL|)

directly, 66-67
in a program, 76

indirectly, 69
Reciprocal (|

1/x

|

), 61
Registers, 33, 62-65

operations with, 66-68
Remainder (IRMDI). 43-44
double (rDBLRl), 54

Repair service, 110-111
Return instruction (|

RTN
|), 74

in subroutine, 87, 95
pending, 94, 95

Reverse Polish Notation (RPN), 10, 21
rRT],rR^, rRTrnjRRnl ,

|RLC| , rRWI ,
|RLCn|

,
rRRCn| ,48-49

Roll up and roll down ([EE, H±]), 23
Rotating operations, 46, 48-50

effect on flag 4, 39
Run mode, 75
Run/Stop (FrTsI), 74, 77

running display, 75

[SBl.50

Scientific notation, 58

132 Subject Index

Scrolling ([>],(<]). 33-34
operations affecting, 101
reset, 34

Self-tests, 106-107
SET COM PL. See Complement modes.
Setting bits, 50
GEL 37
Shifting operations, 46-48

effect on flag 4, 39
SHOW, 29
Sign bit, 29, 32
in shifts, 46-47

Significant digits, 33

Signs, 29, 30, 32

Single step ((HT]), 82
Skip ifTrue rule, 90
fSLl.fSRl.46

Square root ((jT)), 44. 61

Stack

loading, 26-27
manipulation, 22-23
movement, 21-22

Stack lift, 99-100
and drop, 24-26
disabling, 25, 27, 99

enabling, 24, 100

Status

display (I
STATUS

I). 37-38
indication with flags, 36
initializing, 85-86

Storage registers, 66-70
contents, alteration of, 67-68
Floating Point mode, 57, 60
addressing, 69
converting from program memory, 63
converting to program memory, 62-63
direct vs. indirect addressing, 66
size of, 62-63

Storing numbers (|
STO

|)

directly, 66-67
for a program, 76

indirectly, 69

Subject Index 133

Subroutine

execution, 87, 94, 95

nesting, 95
SubtractionO, 41,43,61

Summary of functions, 120-124

T
Temperature specifications, 113

Terminating digit entry, 17-18, 19, 24, 99
Tracing program execution, 82, 84

Two's Complement (US), 29-30, 44

U
Underflow, floating-point, 59
Unsigned mode (I

UNSGN
|), 30

W
Warranty, 108-109

I
WINDOW] , 33
Word size HWSIZEl). 31-32

Floating-Point Decimal mode, 57, 60

and storage registers, 63, 67

double, 52

X
X exchange

R

x (I xs 1

1

, [TiTol). 69
X exchange Y (fxSyl). 23
X-reg ister, 2 1 -23, 33

[jgg.[lR0l.lx>0l. |x>yl .|»#y|.|x#0|,|x = y|,|x = 0l.

See Conditional tests.

The HP-1 6C Keyboard and
Continuous Memory

JSC h

HEWLETT- P A C K A R Dl

AUTOMATIC
MEMORY STACK

Displayed

LAST X
| |

PROGRAM MEMORY
Made available in blocks of

seven lines.

000-

001-

002-

003-

004-

005-

006-

007-

STORAGE REGISTERS

Maximum number depends

on word size Only R to R F

are directly accessible.

There are 203 byles (lines) of

total memory for program-

ming and storage. All

memory is initially in storage

registers and is automatically

allocated to program memory
as necessary.

When each seventh line

(001,008.015 197) is

keyed into a program, seven

more bytes of memory are

converted from data storage

into program memory. The
number of registers required

to supply seven bytes

depends on the current word

size.

Index Register

(not convertible)

Ri

R 9

Ra

Rf

R.o

R.F

R33

R34

¥A7M HEWLETT
miKM PACKARD

Corvallis Division

1000 N.E. Circle Blvd.. Corvallis. OR 97330. U.S.A.

0001 6-90001 Printed in U.S.A. 4/82

. 0m ' /JvJ .: -

